
FACILITY FOR LARGE-SCALE ADAPTIVE MEDIA EXPERIMENTATION

WWW.ICT-FLAME.EU

Dynamic service delivery using network-aware
graph analytics and endpoint controls

2019-06-05

Nikolay Stanchev
IT Innovation

WWW.ICT-FLAME.EU 2© Copyright University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2018

Introduction

• Estimating end-to-end delay measurements through graph-based analytics

• Building a network topology graph

• Building a temporal graph from time-series measurements of a media service

• Querying for round-trip time calculations

• Writing round-trip-time calculations as time-series measurements

• Automating the full graph monitoring pipeline

• Creating a state-change alert policy based on the new metric

WWW.ICT-FLAME.EU 3© Copyright University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2018

Motivation

FLAME CLMC – Cross Layer Management and Control
CLMC combines measurements from different layers of the FLAME platform and allows for the
construction of new metrics which could give a better estimate of the performance of a given
service.

A particular use case is the estimation of the end-to-end delay of a media service, that is the delay
that a client would experience while using this service – a metric which could be broken down to
two different factors:

• network-related measurements

• service-related measurements

WWW.ICT-FLAME.EU 4© Copyright University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2018

Measurement model of the end-to-end service delay

Overall, the assumption is that the total delay of a service function could be measured using the following formula:

total_delay = forward_network_delay + service_delay + reverse_network_delay

which could be extended to the following:

total_delay = forward_latency
+ forward_data_delay (dependent on request size and bandwidth)
+ service_delay
+ reverse_data_delay (dependent on response size and bandwidth)
+ reverse_latency

Full details of these calculations can be found at https://gitlab.it-
innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-clmc/blob/master/docs/total-service-request-delay.md
(contributed by Stephen Phillips).

Important assumption of this simplified model is that services can measure the processing time for requests which is
forward_data_delay + service_delay + reverse_data_delay (out-of-the-box support for nginx, tomcat, etc.)

https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-clmc/blob/master/docs/total-service-request-delay.md

WWW.ICT-FLAME.EU 5© Copyright University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2018

Building the network topology graph
CLMC utilises the northbound API of the SDN controller (Floodlight in current
implementation) to build up the network topology graph and retrieve the switch-to-
switch (a.k.a. service routers) network latencies.

The graph is then stored in Neo4j and is supposed to be managed by the platform
provider.

This is implemented as a REST-like API with the following three endpoints:

• POST http://platform/clmc/clmc-service/graph/network – builds up the network
topology graph and creates new nodes and links if needed

• PUT http://platform/clmc/clmc-service/graph/network – builds up the network
topology graph, but also updates the latency measurement of already existing
links

• DELETE http://platform/clmc/clmc-service/graph/network - completely deletes
the network topology graph

The Neo4j browser could be used to view the graph and explore latency
measurements between service routers – http://platform/clmc/neo4j/browser

WWW.ICT-FLAME.EU 6© Copyright University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2018

Building a temporal graph for a media service

A temporal graph is simply a graph representing the state of a media service in a given time
window, e.g. from start of today until end of tomorrow.

CLMC builds such graphs to calculate the round-trip time from a specific user equipment to a
specific service function endpoint.

In order to build this graph, three metrics must be measured for a given service function:

• response_time (or service delay) – how much time it takes to process a request (seconds),
that is from the moment the first byte of the request is read until the moment last byte of
the response is sent.

• request_size – the size of a request to the service function (bytes)

• response_size – the size of a response from the service function (bytes)

WWW.ICT-FLAME.EU 7© Copyright University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2018

Building a temporal graph for a media service

An example with a Tomcat-based service:

• use the Tomcat Telegraf input plugin for monitoring – includes
fields like bytes_sent, bytes_received and processing_time in
measurement tomcat_connector.

• processing_time is the total time spent processing incoming
requests measured since the server has started.

• bytes_sent and bytes_received measured using the same
approach.

• request_count gives the number of requests since the server
has started.

WWW.ICT-FLAME.EU 8© Copyright University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2018

Building a temporal graph for a media service

For CLMC to understand how to build a media service graph, the graph must be described in JSON
format. The description must define the following:

• the time window for the temporal part of the graph (service function endpoint nodes)

• the media service (a.k.a. service function chain) identifiers

• the service function packages the media service is using

• a partial influx query for obtaining the measurement values described in the previous slide
(request/response size and service delay), basically an aggregation function with a field name, e.g.
mean(processing_time)

• the measurement name where the fields from these partial queries reside, e.g. tomcat_connector

WWW.ICT-FLAME.EU 9© Copyright University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2018

Building a temporal graph for a media service

The JSON description is then sent to CLMC as the body of a POST request to
/clmc/clmc-service/graph/temporal

{
"from": 1549881060,
"to": 1550151600,
"service_function_chain": “demo-sfc",
"service_function_chain_instance": “demo-sfc_1",
"service_functions": {

“sandstorage": {
"response_time_field": "(last(processing_time) - first(processing_time)) / ((last(request_count) –

first(request_count)) * 1000)",
"request_size_field": "(max(bytes_received) - min(bytes_received)) / (last(request_count) – first(request_count))",
"response_size_field": "(max(bytes_sent) - min(bytes_sent)) / (last(request_count) – first(request_count))"
"measurement_name": "tomcat_connector"

}
}

}

WWW.ICT-FLAME.EU 10© Copyright University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2018

Building a temporal graph for a media service

The JSON description is fixing a time window (from 1549881060 to 1550151600, UNIX timestamps) and defining how to query the
average response time, request size and response size of all endpoints that use the sandstorage service function package.

Since Tomcat’s measurement model is reporting continuously increasing metrics (the value since the server has started), the partial
influx queries look a bit more complicated.

For example, the average response time query: (last(processing_time) - first(processing_time)) / ((last(request_count) – first(request_count)) * 1000)

Simple scenario:

• processing_time measurements (measured in milliseconds) received in the time period – 41629, 41641, 41793, 41839
• requests_count measurements received in the time period – 102, 103, 108, 110

• last(processing_time) - first(processing_time) = 210 (milliseconds used to process all requests in this time period)
• last(request_count) – first(request_count) = 8 (total of 8 requests processed in this time period)
• (last(processing_time) - first(processing_time)) / (last(request_count) – first(request_count)) = 26.25

The query defined above will evaluate to 26.25ms = 0.02625s and will give us the the average delay of the service per request.
The same reasoning is used for bytes_sent and bytes_received to calculate the average request size and average response size.

WWW.ICT-FLAME.EU 11© Copyright University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2018

Building a temporal graph for a media service

Visualisation is always more helpful than simply looking at the numbers:

• measurement time window for ‘processing_time’
• measurement time window for ‘request_count’

WWW.ICT-FLAME.EU 12© Copyright University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2018

From time-series to graph data

CLMC monitoring data model:

CLMC
global tags

Measurement-
specific tags Data fields

CLMC measurement

• Media service global tags – flame_sfc, flame_sfp, flame_sfe, flame_location, etc.
• Through the context given by these measurements CLMC can extract the graph nodes and relationships

from the time-series data.

WWW.ICT-FLAME.EU 13© Copyright University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2018

From time-series to graph data

What happens in the background is that a time-series data query is executed and the results are used to generate the media
service graph in the Neo4j database:

SELECT {0} AS mean_response_time, {1} AS mean_request_size, {2} AS mean_response_size FROM "{3}"."{4}".{5} WHERE "flame_sfc"=\'{6}\' and
"flame_sfci"=\'{7}\' and "flame_sfp"=\'{8}\' and time>={9} and time<{10} GROUP BY "flame_sfe", "flame_location", "flame_sf“

The placeholders are filled from the JSON configuration described in the previous slides. Depending on the results we can identify:

• Service function endpoint nodes (from the flame_sfe tag)
• Service function nodes (from the flame_sf tag)
• Service function package nodes (from the flame_sfp tag)
• Service function chain nodes (from the flame_sfc and flame_sfci tag)
• Cluster nodes (from the flame_location tag)

Thus, the full media service graph is built on top of the network topology graph – cluster nodes being the intersection point
between the two graphs.

WWW.ICT-FLAME.EU 14© Copyright University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2018

Query for round-trip-time estimation

Once the full graph has been built, CLMC offers an API endpoint to query
for round-trip-time from a start point (Cluster, Switch or a User Equipment
node) to an end point (Service Function Endpoint). The response is a
breakdown of the round-trip-time measurement:

• GET http://platform/clmc/clmc-service/graph/temporal/<uuid>/round-
trip-time?startpoint=<cluster, switch or ue>&endpoint=<SF endpoint>

The API endpoint is basically a query to the temporal graph for round-trip-time;
the UUID parameter uniquely identifies the subgraph.

The UUID of the temporal graph can be retrieved from the response of the
build request described in the previous slides.

WWW.ICT-FLAME.EU 15© Copyright University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2018

Combining network and service measurements

In the background, a Neo4j Cypher query for shortest-path is executed (based on number of hops) to
retrieve the network path between the start point and the end point defined in the URL of the round-
trip time query request:

MATCH (startpoint:{0} {{ name: '{1}' }}),(endpoint:Endpoint {{ name: '{2}', uuid: '{3}'}}),
path = shortestPath((startpoint)-[*]-(endpoint))
WHERE ALL(r IN relationships(path) WHERE type(r)='linkedTo' or type(r)='hostedBy')
WITH extract(y in filter(x in relationships(path) WHERE type(x) = 'linkedTo') | y.latency) as latencies,
endpoint.response_time as response_time, endpoint.request_size as request_size,
endpoint.response_size as response_size
RETURN latencies as forward_latencies, reverse(latencies) as reverse_latencies, response_time,
request_size, response_size

Placeholders are filled with the request URL query parameters.

WWW.ICT-FLAME.EU 16© Copyright University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2018

Combining network and service measurements

Through the result of the previous query, measurements from the network topology layer are combined
with measurements from the application layer, i.e. the Service Function Endpoint level.

• Network measurements coming from the
network path to the service function endpoint

• Application measurements coming from the
temporal service function endpoint node

WWW.ICT-FLAME.EU 17© Copyright University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2018

Converting round-trip time results to time-series data

Once the graph has been built and a round-trip time query is
executed, the results can be written back as a new measurement in
InfluxDB.

The following steps need to be followed to achieve this:

• convert the JSON response from the Graph API to Influx line
protocol format

Example:
graph_measurements,flame_sfp=sandstorage,flame_sfc=demo-sfc,flame_server=17-sr1-cluster1-
cluster,flame_sfci=demo-sfc_1,flame_sfe=storage.demo-sfc.ict-flame.eu-
172.90.4.52,flame_sf=storage,flame_location=17-sr1-cluster1-cluster,traffic_source=ue18
round_trip_time=0.002,service_delay=0.002,network_delay=0,request_size=0,response_size=1422.5
1560675146000000000

• send a POST request to InfluxDB including the measurement line
above

WWW.ICT-FLAME.EU 18© Copyright University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2018

Clean up the media service graph

Since the endpoints layer of the full graph is temporal and only valid for the defined time window,
it needs to be deleted and created again if a more recent round-trip-time measurement is
needed.

• DELETE http://platform/clmc/clmc-service/graph/temporal/<uuid>

This finishes the lifecycle of a graph monitoring activity – build temporal graph, query it , delete it.

Alternatively, if the full graph of a service function chain must be deleted there is a separate API
endpoint to use:

• DELETE http://platform/clmc/clmc-service/graph/static/<SFC identifier>

WWW.ICT-FLAME.EU 19© Copyright University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2018

Graph monitoring

Ultimately, the media service provider can choose how to manage it. Two main strategies:

Sliding window:

Tumbling window:

overlapping time periods

non-overlapping time periods

X
X + 5s

X + 10s
X + 15s

X + 20s

X
X + 10s

X + 20s
X + 30s

X + 40s

Out-of-the-box support from CLMC

WWW.ICT-FLAME.EU 20© Copyright University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2018

Automating the end-to-end delay monitoring process

CLMC offers the full graph-based pipeline as a service. An API endpoint allows the activation of a
graph monitoring process, running in the background on CLMC constantly executing the pipeline
described in the previous slides.

A JSON configuration, similar to the one used in the build request for a temporal graph, is sent to
CLMC to start a graph monitoring process

• POST http://platform/clmc/clmc-service/graph/monitor

The difference is that instead of defining a time window, we define a query period (e.g. 30
seconds, that is how often the pipeline script will execute) and the name of the measurement
where results will be written in.

WWW.ICT-FLAME.EU 21© Copyright University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2018

Automating the end-to-end delay monitoring process

Example JSON description:
{

“query_period": 30,
"results_measurement_name": “graph_measurements",
"service_function_chain": “demo-sfc",
"service_function_chain_instance": “demo-sfc_1",
"service_functions": {

“sandstorage": {
"response_time_field": "(last(processing_time) - first(processing_time)) / ((last(request_count) – first(request_count)) * 1000)",
"request_size_field": "(max(bytes_received) - min(bytes_received)) / (last(request_count) – first(request_count))",
"response_size_field": "(max(bytes_sent) - min(bytes_sent)) / (last(request_count) – first(request_count))"
"measurement_name": "tomcat_connector"

}
}

}

• the pipeline executes every 30 seconds building a temporal graph for the time window between
now() – 30s and now()

• end-to-end delay metrics will be written into measurement named graph_measurements

WWW.ICT-FLAME.EU 22© Copyright University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2018

Automating the end-to-end delay monitoring process

Runtime execution of the graph monitoring process:

Timestamp X X + 30s X + 60s X + 90s

WWW.ICT-FLAME.EU 23© Copyright University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2018

Automating the end-to-end delay monitoring process

Runtime execution of the graph monitoring process – querying for round-trip time from all UE nodes:
Timestamp X X + 30s

WWW.ICT-FLAME.EU 24© Copyright University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2018

Automating the end-to-end delay monitoring process

Runtime execution of the graph monitoring process – writing back the results from all round-trip time
queries into InfluxDB and generating a new measurement with contextualised data:

WWW.ICT-FLAME.EU 25© Copyright University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2018

Managing the graph monitoring process

As with any other monitoring agents or measurement plugins, we need to be able to manage this
graph pipeline.

A graph monitoring process can be stopped:

• DELETE http://platform/clmc/clmc-service/graph/monitor/<uuid>

or we can check its status:

• GET http://platform/clmc/clmc-service/graph/monitor/<uuid>

The UUID identifying a graph monitoring process is retrieved from the CLMC response for the
request that started it.

WWW.ICT-FLAME.EU 26© Copyright University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2018

Creating an alert policy for the round-trip time metric

Now that we have a new metric, we can create a simple threshold alert policy which will boot a second
service function endpoint once the average round-trip time performance exceeds the given value:

scale_out:
event_type: threshold

metric: graph_measurements.round_trip_time
condition:

threshold: 2
granularity: 30
comparison_operator: gte
resource_type:

flame_sf: storage
flame_location: 20-sr1-cluster1-cluster

action:
implementation:

- flame_sfemc

Usually, it is the flame_sfe tag used to identifier an endpoint, runtime generation though – therefore, we
use the combination of the two tags flame_sf and flame_location to identifies the first service function
endpoint.

WWW.ICT-FLAME.EU 27© Copyright University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2018

Creating an alert policy for the round-trip time metric

In addition, we also create a trigger to stop the second service function endpoint when it is not
doing any work:

scale_in:
event_type: threshold

metric: graph_measurements.round_trip_time
condition:

threshold: 0.5
granularity: 65
comparison_operator: lt
resource_type:

flame_sf: storage
flame_location: 17-sr1-cluster1-cluster

action:
implementation:

- flame_sfemc

Again, the combination of the two tags flame_sf and flame_location is used to identify the
second service function endpoint.

This project received funding from the European Union’s Horizon2020
research and innovation programme under grant agreement No 731677

ICT-FLAME.EU @ICT_FLAME

THANK YOU FOR YOUR ATTENTION

