
Page 1 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

Grant Agreement No.: 731677
Call: H2020-ICT-2016-2017

 Topic: ICT-13-2016
Type of action: RIA

5оΦммΥ C[!a9 ¢ŜŎƘƴƻƭƻƎȅ wƻŀŘƳŀǇ ±о
Sebastian Robitzsch, Dirk Trossen (InterDigital Europe)

11 October 2019

This report is the third technology roadmap for a ground-breaking media service delivery platform
being developed within the FLAME project. The report is positioned in-between the major release
cycles of FLAME platform beta and final candidate releases (Release Candidate). It therefore focuses
on the areas of platform deployment and replication, and complements the technology features of the
core platform itself described in previous deliverables. Furthermore, this report outlines the FLAME
consortium approach to managing the agile development lifecycle of the platform, which drives
platform releases before the planned milestone releases outlined in D3.7.

Page 2 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

Work package WP3

Task Task 3.11

Due date 30/04/2019

Submission date 11/10/2019

Deliverable lead InterDigital

Version 1.0

Authors Dirk Trossen (InterDigital), Sebastian Robitzsch (InterDigital)

Reviewers Manuel Braunschweiler (ETH), Gino Carrozzo (NXW)

Keywords Agile lifecycle, release schedule, replication

Document Revision History

Version Date Description of change List of contributor(s)

V0.1 06/08/2019 First outline for comments Dirk Trossen

V0.2 30/08/19 ARDENT added Sebastian Robitzsch

V0.3 2/09/19 Best Current Practises, Introduction Sebastian Robitzsch, Dirk Trossen

V0.4 11/09/19 Section 2 completed, revised positioning to
other deliverables

Sebastian Robitzsch, Dirk Trossen

V0.5 12/09/19 Review Version Sebastian Robitzsch, Dirk Trossen

V1.0 27/09/2019 Final Version Sebastian Robitzsch

V1.1 11/10/2019 Final Quality Assurance Michael Boniface

Disclaimer

This project has ǊŜŎŜƛǾŜŘ ŦǳƴŘƛƴƎ ŦǊƻƳ ǘƘŜ 9ǳǊƻǇŜŀƴ ¦ƴƛƻƴΩǎ Horizon 2020 research and innovation
programme under grant agreement No 731677.

¢Ƙƛǎ ŘƻŎǳƳŜƴǘ ǊŜŦƭŜŎǘǎ ƻƴƭȅ ǘƘŜ ŀǳǘƘƻǊǎΩ ǾƛŜǿǎ ŀƴŘ ǘƘŜ /ƻƳƳƛǎǎƛƻƴ ƛǎ ƴƻǘ ǊŜǎǇƻƴǎƛōƭŜ ŦƻǊ ŀƴȅ ǳǎŜ ǘƘŀǘ
may be made of the information it contains.

Project co-funded by the European Commission in the H2020 Programme

Nature of the deliverable: R

Dissemination Level

PU Public, fully open, e.g. web V

CL Classified, information as referred to in Commission Decision 2001/844/EC

Page 3 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

CO Confidential to FLAME project and Commission Services

Page 4 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

9·9/¦¢L±9 {¦aa!w¸

This report is deliverable D3.11 FLAME Technology Roadmap V3, and it is positioned in-between the
major release cycles of FLAME platform beta and candidate releases (Release Candidates, RC). The
document focuses on the areas of platform and technology development that complements the
technology features of the FLAME core platform described in previous deliverables issued by
workpackage 3.

Due to this main scope, the report presents also the agile development lifecycle of the platform while
also outlining the replication tools and processes that are being developed in the course of the
replication to the different sites, including the Open Call 3 replicators. The outcome is a tool chain for
accelerating the replication of the FLAME platform at deployment sites with a significant reduction in
time and cost. The deliverable originally due by April 2019, has been delayed to incorporate first
insights and integration outcomes from Open Call 2 replication into our tools and process.

The development lifecycle approach described in this document has been developed in conjunction
with the experimentation and replication at sites in Bristol and Barcelona. The document describes
how the lifecycle management is realized in collaboration with both experimenters and replicators,
leading to intermediary releases outside the main release milestones outlined in D3.7, i.e., alpha, beta
and Release Candidate releases.

The replication process described in this document was developed alongside the platform
development and deployment in experimentation sites, specifically Bristol and Barcelona. This
replication process and the developed tools to support replication are described, while a more detailed
replication documentation is planned for a later release in the form of an online repository throughout
fall of 2019.

This report complements the previously delivered report D3.7 [FLAME-D3.7] and focuses on the
technology development and process aspects more than the specific technology features of the FLAME
platform itself. With this, the document serves as a stand-alone document.

Page 5 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

¢!.[9 hC /hb¢9b¢{

1 INTRODUCTION .. 10

2 PLATFORM DEVELOPMENT LIFECYCLE ... 11

2.1 Process Overview ... 11

2.2 Lifecycle Implementation via GitLab .. 12

2.2.1 Issue Tracking ... 13

2.2.2 Merge Requests ... 14

2.2.3 Milestones .. 14

2.2.4 Tags .. 15

2.2.5 Labels ... 16

2.3 Platform Testing and Validation .. 16

2.3.1 Service Function Routing ... 17

2.3.2 Cross-layer Management and Control ... 20

2.3.3 Orchestrator and SFEMC .. 20

2.3.4 Northbound Service Endpoints of Infrastructure Provider .. 21

2.4 Platform Repository ... 21

3 PLATFORM REPLICATION PROCESS & TOOLS ... 23

3.1 Best Current PractiCes ... 23

3.1.1 Compute Node Locations ... 23

3.1.2 SDN Switching Fabric ... 23

3.1.3 OpenStack Configuration ... 24

3.2 ARDENT Tool .. 25

3.2.1 Purpose and Workflow .. 26

3.2.2 Networks, Subnets and Security Groups ... 26

3.2.3 Automations Performed by ARDENT ... 28

3.2.4 Architecture ... 31

4 CONCLUSIONS .. 42

5 APPENDIX ... 43

5.1 ARDENT Infrastructure Descriptor Definitions .. 43

Page 6 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

[L{¢ hC CLD¦w9{

FIGURE 1: PLATFORM RELEASES IN RELATION TO PROJECT MILESTONES ... 10

FIGURE 2: AGILE EXPERIMENT-DRIVEN REPLICATION WORKFLOW .. 11

FIGURE 3: PROGRAMMING LANGUAGES USED IN THE FLAME-PLATFORM REPOSITORY 12

FIGURE 4: RELEASE WORKFLOW AND INTEGRATION CYCLE ... 13

FIGURE 5: COMPLETED MILESTONES OF THE FLAME-PLATFORM REPOSITORY 15

FIGURE 6: MASTER TAGS ON GITLAB WITH LINKS TO THEIR MERGED MILESTONES 16

FIGURE 7: TESTING AND VALIDATION PROCESS FOR NEW SFR RELEASES ... 18

FIGURE 8: PHYSICAL TOPOLOGY OF SFR DEBUGGING AND PROFILING TESTBED AT INTERDIGITAL 19

FIGURE 9: LOGICAL TOPOLOGY OF SFR DEBUGGING AND PROFILING TESTBED AT INTERDIGITAL 19

FIGURE 10: INTERDIGITAL'S STAGING TESTBED ... 20

FIGURE 11: WORKFLOW FOR DEPLOYMENT OF PLATFORM USING INFRASTRUCTURE AND PLATFORM
DESCRIPTORS ... 26

FIGURE 12: INFRASTRUCTURE TENANT NETWORKS AND THEIR PURPOSE ... 27

FIGURE 13: ARDENT ARCHITECTURE ... 32

FIGURE 14: ARDENT DATABASE SCHEMA .. 33

CLD¦w9 мрΥ 9·!at[9 {Y9¢/I hC !w59b¢Ω{ D¦L ... 34

FIGURE 16: PROCESS DEPENDENCIES .. 37

Page 7 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

[L{¢ hC ¢!.[9{

TABLE 1: NETWORKS, SUBNETS AND SECURITY GROUPS FOR FLAME PLATFORM 28

TABLE 2: PLATFORM COMPONENTS PER COMPUTE NODE TIER LEVEL ... 29

TABLE 3: FLAVOUR PROPERTIES FOR CONTROL FUNCTIONS OF THE PLATFORM 30

TABLE 4: FIXED IP ADDRESSES ... 31

TABLE 5: RESTFUL WEB SERVICE OF ADS INTERFACE ... 35

TABLE 6: RESTFUL WEB SERVICE OF AID INTERFACE ... 35

TABLE 7: ASC RESTFUL INTERFACE DESCRIPTION .. 35

TABLE 8: KEYS FOR THE YML NODE COMPUTE_NODE ... 38

TABLE 9: KEYS FOR THE YML NODE NETWORK .. 39

TABLE 10: KEYS FOR THE YML NODE SUBNET .. 40

TABLE 11: KEYS FOR THE YML NODE SECURITY_GROUPS .. 40

TABLE 12: KEYS FOR THE YML NODE INFRASTRUCTURE_SERVICES .. 40

TABLE 13: KEYS FOR THE YML NODE METADATA .. 41

Page 8 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

!..w9±L!¢Lhb{

API Application Programming Interface

ARDENT Automated platfoRm DEploymeNt Toolchain

BCP Best Current Practise

CI Continuous Integration

CLI Command Line Interface

CLMC Cross-Layer Management and Control

CIDR Classless Inter-Domain Routing

DC Data Centre

DHCP Dynamic Host Configuration Protocol

DNS Domain Name Server

FiaB FLAME-in-a-Box

FQDN Fully Qualified Domain Name

GUI Graphical User Interface

HTTP Hyper Text Transfer Protocol.

HOT HEAT Orchestration Template

IETF Internet Engineering Task Force

IP Internet Protocol

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

KPI Key Performance Indicator

LEARNT FLIPS Debugging and Profiling Testbed

MGMT Management

MPLS Multi-protocol Label Switching

MTU Maximum Transmission Unit

NFV Network Function Virtualisation

PCE Path Computational Element

Page 9 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

PoA Point of Attachment

PS Platform Service

QoS Quality of Service

RAN Radio Access Network

RC Release Candidate

SDN Software Defined Network

SIA Secure Inbound Access

SF Service Function

SFC Service Function Chain

SFE Service Function Endpoint

SFEMC SF Endpoint Management and Control

SFR Service Function Routing

SR Service Router

TCAM Ternary Content Addressable Memory

TCP Transmission Control Protocol

TOSCA Topology and Orchestration Specification for Cloud Applications

UE User Equipment

VLAN Virtual Local Area Network

VM Virtual Machine

WiFi Wireless Fidelity

YML Yet another Markup Language

Page 10 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

1 Lb¢wh5¦/¢Lhb

This document describes the technical roadmap for replication and infrastructure integration of the
FLAME platform in replicators, including a description of the agile development approach that leads to
the planned, stable platform releases. With this, the deliverable is positioned as a process description
document that complements the planned platform releases with additional processes and tools for
said replication and agile development.

The FLAME consortium has planned three major releases of the FLAME offering within the lifetime of
the project, as outlined in [FLAME-D3.7]. The timing of major releases is aligned with the timescales of
trials. Each major release will include significant feature enhancements within the overall offering
across infrastructure, platform and media services. A release at the project level indicates the launch
ƻŦ ŀ άC[!a9 {ŜǊǾƛŎŜέ ŦƻǊ ǘǊƛŀƭǎ in contrast to the release of specific software products that the FLAME
Service depends on.

Figure 1: Platform releases in relation to project milestones

After the initial releases in Feb-18 (for the initially planned alpha release for internal testing), updated
releases were planned for Oct-18, Jan-19 and Dec-19 with the working names of Alpha, Alpha+, Beta
and Release Candidate (see Figure 1), respectively. These major releases correspond to milestones for
FLAME feature implementation, with said feature mapping onto the releases outlined in [FLAME-D3.7].

The project implements DevOps processes to offer greater agility in the implementation of release and
features. As such, minor releases are delivered in between major milestones to incorporate new
features when they are available and hot bug fixes when they are critical to service operations.

With the final release candidate planned for December 2019, this deliverable addresses the roadmap
on replication documentation and tools, placed in the cycle of Figure 1 in-between the beta and RC
release of the overall platform. For this, we utilize the ongoing replication of the FLAME platform to
not only the internal sites (Barcelona and Bristol for the test beds, and London as well as Southampton
for the developer toolchain, as outlined in [FLAME-D3.7]) but also to the Open Call 2 accepted
replication projects.

Page 11 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

2 t[!¢Chwa 59±9[hta9b¢ [LC9/¸/[9

As mentioned in the introduction, the major platform releases in FLAME are planned according to the
timeline presented in D3.7 [FLAME-D3.7], shown in Figure 1. The following section presents our
approach to working in conjunction with replications and trials to establish an agile development
lifecycle.

2.1 twh/9{{ h±9w±L9²

Through Open Call 2, additional external replication sites are starting to bring FLAME into their
infrastructures. The process of deployment, instantiation at specific infrastructures and
experimentation generates insights which help to consolidate and refine the FLAME release contents
in sake of stabilisation. Insights from Open Call 1 and 2 validation experiments as well as FLAME trials
in Bristol and Barcelona are being utilised in improving the platform reliability across the existing sites
as well as the Southampton Sandpit and FLAME-in-a-Box (FiaB).

To ease and efficiently manage this process, a more agile code base maintenance processes must be
implemented in order to integrate new features and bug fixes into the code base and bring it to all
replication sites. Figure 2 illustrates the experimental-driven approach applicable to all replication sites
at high level.

Figure 2: Agile experiment-driven replication workflow

On the left side, the experiments are carried out at a particular replication site1 focussing on testing
and experimenting with the service function chain itself (circle at the bottom left in Figure 2); later the
experimentation runs against pre-defined objectives and KPIs ensuring the readiness of the entire
communication stack for a trial (circle at the top left in Figure 2). Once an issue has been found, it is
tracked, fixed, and tested locally in a separate process outside the replication site, as illustrated in the

1 This includes the sandpit and FLAME-in-a-Box (FiaB) with FiaB focusing on experimentation of the SFC only.

Page 12 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

circles at the center and the right in Figure 2. If issues are of rather complex nature, a replication of
the scenario is conducted in a local testbed where debug versions of the deployed platform are being
used to investigate the issue in a more efficient manner. Upon the fix being addressed, the merged
solution is then re-deployed sequentially across all sites based on their availability to cause the least
disruption to any experimenter.

If the merged solution relates to the interaction with the infrastructure (SDN rule construction, new
logical topologies or even a change of hardware) a set of tests are performed to validate the readiness
of the platform at a particular site, as described in detail in Section 2.3.

2.2 [LC9/¸/[9 Lat[9a9b¢!¢Lhb ±L! DL¢[!.

The maintenance and coordination of the high-level process described in Section 2.1 is described in
this section in detail and has been fine-tuned during the last year after a change of leadership in WP3
ŀƴŘ ǘƘŜ ǊŜǎǇƻƴǎƛōƭŜ ǇŀǊǘƴŜǊ ŦƻǊ ƛƴǘŜƎǊŀǘƛƻƴΦ ! ŘŜŘƛŎŀǘŜŘ άŦƭŀƳŜ-ǇƭŀǘŦƻǊƳέ Dƛǘ[ŀō ǊŜǇƻǎƛǘƻǊȅ ŜȄƛǎǘs
since day 1 of the FLAME project and comprises the scripts and documentation to prepare, deploy and
maintain a deployed FLAME platform at any replication site (operating on top of OpenStack). As the
development of the platform components themselves are hosted outside of this repository, the
programming languages used in flame-platform are Shell, Awk, Makefiles and Python only, as
illustrated in the figure below2. The reason for that is that the flame-platform code are wrapper
functions around the OpenStack CLI to build images and deploy/maintain and delete the platform from
an OpenStack cloud via the CLI.

Figure 3: Programming languages used in the flame-platform repository

Furthermore, the development of the service-function routing solution by InterDigitial is hosted and
conducted outside of FLAME shared repositories: in fact, only binaries are being shared with every
partner who has signed an evaluation license with InterDigital in order to deploy the FLAME platform
themselves (such as FLAME-in-a-Box).

The flame-platform repository has two permanent branches: master and integration. The tasks around
the two branches are illustrated in Figure 4 with master on the left and integration on the right. As
depicted, the master branch only receives updates if a milestone (MS) has been closed and is ready to

2 Obtained from https://git lab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-platform/graphs
/master/charts. Note, the repository is private and requires authentication.

https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-platform/graphs/master/charts
https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-platform/graphs/master/charts

Page 13 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

be merged into master. In that case, a merge request is conducted, and the update HEAD of master is
tagged with the internal release numbers. As a last step, the new flame-platform release is officially
released to the project by upgrading the platforms deployed across all sites using the master branch.

Figure 4: Release workflow and integration cycle

If an issue has been found in a platform a new issue is opened on GitLab and added to the currently
active milestone. From there, a new branch is created if the code of flame-platform is affected
including a merge request which is called WIP as long as it has not been fixed. Upon the resolution of
the issue, the related branch is merged into integration and the issue is closed.

2.2.1 Issue Tracking

The procedures for tracking issues in the flame-platform repository has been developed over time by
the Consortium and is the result of various attempts to optimise the level of details and process
required to deliver stable and complete releases. Thus, it has been decided to relate GitLab issues to
complications experimenters have with the platform or the platform has with the infrastructure. When
a new issue is created templates are available for each replication site which allow to select one or
more categories from a list along with fields to describe the problem someone is facing. Along with the
issue template the platform and infrastructure owners are tagged as well as which version of the
platform is being used and which infrastructure it is. An example is given below for the sandpit in
Southampton:

Summary

(Summarize the bug encountered concisely)

Please select the platform component you have issues with

- [] Service function routing (SFR)

- [] Platform services (DNS, DHCP, Internet)

- [] Cross layer management and control (CLMC)

- [] Orchestrator

- [] Service function endpoint management and control (SFEMC)

- [] ARDENT

Page 14 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

Please fill out the table below too if SFR was ticked in the list above:

| OSI Layer | Protocol |

| --- | --- |

| Internet | IP or ICMP |

| Transport | UDP or T CP |

| Application | HTTP, HTTPS, SSH, DHCP, FTP, TLS/SSL, other |

Steps to Reproduce

(How one can reproduce the issue - this is very important)

What is the current behaviour ?

(What actually happens)

What is the expected correct behaviour ?

(What you should see instead)

Relevant logs and/or screenshots

(Paste any relevant logs - please use code blocks (```) to format console

output,

logs, and code as it's very hard to read otherwise.)

For A dmin Use Only

/label ~sandpit ~"2.3.0"

/cc @ sebastian.robitzsch @mjb

If an issue is acknowledged, the person working on it assigns it to himself on GitLab. If an issue requires
discussions or is about reporting results, there is no new branch created to change any of the code
hosted in this repository. If the code is affected a new branch and merge request is created. An issue
is being closed by the project owner in corporation with the people involved in the discussion.

2.2.2 Merge Requests

While merge requests are created when a new issue receives its own branch to work on the code, they
are not always linked to an issue. Sometimes a new merge request is being created to work directly in
Dƛǘ[ŀōΩǎ web IDE on the scripts. These changes are marginal and do not require a new issue itself. In
such case the merge request is added to the milestone and it can be retrieved as part of the milestone
on GitLab as a new, active or closed issue.

2.2.3 Milestones

In order to track progress, milestones are used in the flame-platform repository, which have the name
of the upcoming internal release number. As mentioned before, each issue is added to a milestone
when being created and once all issues of a milestone have been resolved, the merge into master can
be conducted. Thereby, the tagging of the master branch using the milestone version numbering
approach allows to refer directly to what has been changed without writing additional release notes.

The list of completed milestones at the time of writing this deliverable are listed in the figure below.

Page 15 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

Figure 5: Completed milestones of the flame-platform repository3

2.2.4 Tags

Tags are solely used to refer to a particular platform release in the master branch. As indicated before,
the release version is used as a tag which maps directory to a milestone where new component
versions will be mentioned, and completed issues and merge requests are tracked. Also, if required
older platform versions can be easily deployed by checking out a specific tag number from the
flame-platform repository. In Figure 6 all existing tags in master are illustrated with the milestone (of
format %1.2.3) as hyperlinks to check the changes.

3 The latest list of completed milestones can be obtained from https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium
/3rdparties/flame-platform/milestones?sort=due_date_desc&state=closed. Note, in order to access the link you must have
ŀŎŎŜǎǎ ǘƻ C[!a9Ωǎ Dƛǘ[ŀōΦ

https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-platform/milestones?sort=due_date_desc&state=closed
https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-platform/milestones?sort=due_date_desc&state=closed

Page 16 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

Figure 6: Master tags on GitLab with links to their merged milestones4

2.2.5 Labels

In addition to aggregate issues into milestones, labels are used for each issue allowing to further filter
new, active and closed issues. It became apparent that some issues relate only to a specific replication
site or component. Therefore, the following labels were introduced in order to get a different
perspective of issues:

- Releases: the currently active release this issue is based on. If an issue cannot be fixed in an
upcoming release the label will indicate when it occurred.

- Replication sites: each replication site receives a unique label that is added to an issue once it
is related to only this particular deployment or ǘƘŜ ǊŜǇƭƛŎŀǘƛƻƴ ǎƛǘŜΩǎ infrastructure.

2.3 t[!¢Chwa ¢9{¢LbD !b5 ±![L5!¢Lhb

The FLAME platform consists of various components and APIs (of type service endpoint as well as
endpoint), as defined in the platform specification outlined in [FLAME-D3.10]. In order to ensure that

4 The tags can be reached via https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-platform/tags.
Note that in order to access ǘƘŜ ƭƛƴƪ ȅƻǳ Ƴǳǎǘ ƘŀǾŜ ŀŎŎŜǎǎ ǘƻ C[!a9Ωǎ Dƛǘ[ŀōΦ

https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-platform/tags

Page 17 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

any update does not affect any other functionality or readiness of the platform a series of tests is
conducted.

While Deliverable D4.2 [FLAME-D4.2] has listed the areas each platform component is tested against,
this section focuses on the lifecycle of those tests and how the testing and validation work is organised
to ensure the readiness of the platform across multiple sites.

2.3.1 Service Function Routing

The testing and validation lifecycle for service function routing (SFR) is illustrated in Figure 7. While the
hardening of SFR is in the foreground after most features have been completed, a dedicated testbed
has been ŎǊŜŀǘŜŘ ŀǘ LƴǘŜǊ5ƛƎƛǘŀƭΩǎ ƻŦŦƛŎŜǎ ƛƴ [ƻƴŘƻƴ ǿƘƛŎƘ ŀƭƭƻǿǎ ǘƻ ŘŜōǳƎ ŀƴŘ ǇǊƻfile LƴǘŜǊ5ƛƎƛǘŀƭΩǎ
FLIPS platform, the prototype that implements the SFR component in the FLAME platform. In addition
to that, a staging testbed is available for benchmarking the platform over a hardware-based SDN
switching fabric interconnecting a three-tier edge compute infrastructure. The two testbeds are
described in more detail later in this subsection. First, we focus on the lifecycle to put the testbeds into
perspective.

When a new SFR version has been created, it is tested in the fLips dEbugging And pRofiliNg Testbed
(LEARNT) against memory leaks and profiled against inefficiencies in the code, while comparing it to
the benchmark results obtained from the SFR version before. The system tests for this purpose are
fully automated procedures and cover the SFR feature list (see [FLAME-D4.2] for more details). Once
this step is successfully completed, the updated SFR binaries are integrated into the image build
process of the platform including any changes to the process itself or to how FLIPS must be configured
when being deployed. The image building and platform deployment is then tested in the staging
testbed of InterDigital, also described in more detail later in this section. To ensure the updated
platform stack is operated flawlessly, the multi-layer PeRfOrmance TEst SuiTe (PROTEST) is being used,
which performs iperf-based UDP and TCP, ICMP, HTTP progressive download tests. Upon its successful
completion, the updated platform is being released and deployed into the various sites. As part of the
updating process, PROTEST is used again to ensure the SFR update has not caused any unexpected
behaviour at a specific site.

Page 18 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

Figure 7: Testing and validation process for new SFR releases

2.3.1.1 FLIPS Debugging and Profiling Testbed

In order to fix issues, LEARNT allows to run FLIPS in different level of logging levels with additional
debugging tools ready. LEARNT is also used to profile FLIPS in order to understand where
improvements could be made to getting close to an all-IP set-up. The environment is illustrated in the
figure below. All nodes at the top are KVM-based virtual instances on a single 8 core machine called
aslan with one vCPU configured for each instance. The two nodes outside aslan are dedicated APU2-
based set-ups to not further overload the available cores of aslan. One important thing to note is that
the UE node apu46-ue is connected to the SR, sr-ue, via a dedicated 1G port to ensure a stable and
predictable connection into the deployed SFR testbed.

Page 19 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

Figure 8: Physical Topology of SFR debugging and profiling testbed at InterDigital

The resulting logical topology is illustrated below. The idea behind this topology is to have a dedicated
SDN software switch in the topology that interconnects the SR serving the UE and the SR serving the
cluster as well as a dedicated port for traffic towards the other instances.

Figure 9: Logical topology of SFR debugging and profiling testbed at InterDigital

On this testbed, system tests have been implemented covering all SFR features listed before and can
be run fully automated to ensure they all pass and no SFR update has any impact on the feature.
Furthermore, SFR has assertions build into the code to fail on them if an unexpected behaviour occurs
which stops the operation of the component gracefully.

2.3.1.2 Staging Testbed

The staging testbed is a three-tier edge compute infrastructure that is interconnected with hardware-
based SDN switches as the core 10G ring and a local breakout point with a WiFi access point for
connecting any sort of device. The SDN hardware switches are labelled Pica8-n in Figure 10 and
interconnect the data centre compute nodes os-data-centre-1 and os-data-centre-1, the edge
compute nodes os-edge-1, os-edge-2 and os-edge-3 as well as the physical breakout point at Pica8-2
of platform instances that are not orchestrated via OpenStack. The local breakout, also labelled as the

Page 20 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

far edge, offers resources to deploy SFs as well. In the figure below, each coloured box inside a
compute node represents a virtual instance deployed via OpenStack and is part of the platform stack.

Figure 10: InterDigital's staging testbed

To test the platform, PROTEST is installed on the apu88-ue node (bottom left corner in the figure
above) which is connected via WiFi to the platform.

2.3.2 Cross-layer Management and Control

The FLAME CLMC is tested and validated at IT Innovation using an extensive set of tests covering
different aspects of the component, i.e. set-up, unit-, stress- and system-tests (more information in
[FLAME-D4.2]). The tests are run through continuous integration processes coordinated through
GitHub and executed on separate containerised testing platforms. With the successful completion of
the tests, the CLMC component is merged into a new platform release and tested inside LƴǘŜǊ5ƛƎƛǘŀƭΩǎ
staging testbed by deploying a PROTEST-based SFC to test data points such as CPU load and reported
number of HTTP requests. In addition to that, an alert descriptor is given to CLMC to ensure the CLMC
<> SFEMC API for monitoring and alerting is working as expected.

2.3.3 Orchestrator and SFEMC

While the orchestrator and SFEMC are being used in LEARNT to deploy, maintain and delete the SFC
to conduct the necessary debugging and profiling tasks, their readiness is validated in the staging
testbed via dedicated system tests (see [FLAME-D4.2] for more details) that are run in a loop for several
hours. This also includes a dummy endpoint issuing triggers to SFEMC mimicking CLMC.

Page 21 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

2.3.4 Northbound Service Endpoints of Infrastructure Provider

The two northbound APIs used by the platform are OpenStack and the SDN controller to deploy the
platform and to configure the SDN switching fabric, respectively. While OpenStack is more of interest
to ARDENT (which is not a platform component), any change in infrastructure and/or logical platform
topology requires thorough testing in environments where hardware switches are being used to
ensure the rules injected via the SDN controller are translated correctly (see 3.1.2 for more
information). The tests ǇƛƎƎȅōŀŎƪ ƻƴ twh¢9{¢Ωǎ ŀǾŀƛƭŀōƛƭƛǘȅ ŀƴŘ ǘƘŜ ŀŘŘƛǘƛƻƴ ƻŦ ŜƳǳƭŀǘŜŘ ¦9ǎ deployed
as a 2nd stack in OpenStack alongside the platform. Testing various traffic patterns across all possible
UE <> SFs connections ensures the rules and the platform in a particular infrastructure are functional.

2.4 t[!¢Chwa w9th{L¢hw¸

The platform repository flame-platform has the four main folders:

- ardent - The proof-of-concept implementation of ARDENT which follows the work-flow
described in 3.2 but not the APIs. This initial implementation does not auto-generate HOTs
either.

- deploy - This directory comprises the HEAT orchestration templates for each component as
well as the site-specific HOT which calls the component HOTs in order to create a single
OpenStack stack for the entire platform.

- Infrastructures - Inside this directory each infrastructure provider added their scripts to
configure their switches or OpenStack in case the step has to be repeated. The infrastructure
descriptor for the proof-of-concept implementation of ARDENT is located there too.

- Src - This folder contains the scripts to build the images for each platform component.

Documentation is gradually moved to the wiki5 of the flame-platform, as it would otherwise require a
commit and merge request to update any new documentation. The wiki follows a hierarchical
structure:

¶ Infrastructures

o Bristol

o Barcelona

o London (Open Call 2 winner KCL)

o Sicily (Open Call 2 winner Level7)

o Sandpit (Southampton)

¶ Platform

o Component properties

5 The wiki can be accessed via https://gitl ab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-platform
/wikis/home. Note, the GitLab wiki is private and requires authentication.

https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-platform/wikis/home
https://gitlab.it-innovation.soton.ac.uk/FLAME/consortium/3rdparties/flame-platform/wikis/home

Page 22 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

o Deployed versions across infrastructures

o Deployment instructions

Page 23 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

3 t[!¢Chwa w9t[L/!¢Lhb twh/9{{ ϧ ¢hh[{

The FLAME platform being deployed at four sites at the moment: Bristol and Barcelona being the main
trial sites, complemented by Southampton for the sandpit-based testing and the InterDigital London
deployment for platform testing; two more replicators follow as part of Open Call 2 activities.

The replication process, tooling and its derived best current practices are going to be presented in this
section. As part of this replication process, FLAME has designed and implement ARDENT, a toolchain
that automates such deployment into a fully programmable infrastructure.

3.1 .9{¢ /¦ww9b¢ tw!/¢L/9{

This section describes the best current practices on how to deploy the FLAME platform into a
programmable infrastructure with OpenStack and OpenFlow as the primary APIs towards it. It is
worthwhile mentioning that the presented content has been solely developed in a trial-and-error
manner, as there is no standard approach at the time of writing. Across all replication sites (including
the two Open Call 2 winners), the existing infrastructures are differently managed, serve different
purposes and have been used in different contexts, which explains some of the practises being
explicitly listed and explained here.

3.1.1 Compute Node Locations

Compared to platforms of telco vendors (RAN solutions) the key difference of the FLAME deployment
is the requirement of FLAME platform components to be deployed in particular compute nodes and
having compute nodes distributed across the infrastructure, such that they are literally located where
they are needed. This can be explained by the fact that a FLAME service router (SR)6 needs to terminate
IP traffic and acts as a TCP proxy for any TCP-based traffic; any communication between SRs is then
based on path-based forwarding (see [FLAME-D3.10] for more details). Therefore, in order to leverage
the potential of path-based forwarding (service-based routing for HTTP traffic), the placement of SR
functionality should be where the traffic is initiated, i.e., at the very edge of the network. Placing those
SR compute nodes deeper inside the network would reduce efficiency of traffic forwarding.

The FLAME platform separates service and infrastructure providers from each other by providing its
own service orchestration. From a technical side, this is enabled through instances deployed inside the
ƛƴŦǊŀǎǘǊǳŎǘǳǊŜΩǎ ŎƻƳǇǳǘŜ ƴƻŘŜǎ, into which service providers are offered to deploy their services into.
Those instances are called clusters inside the FLAME platform. Based on the location of a compute
node and its available resources, it is labelled as either a data centre, edge, far edge or mist compute
node. ARDENT uses this type of compute tiers to determine which platform components are
instantiated on a compute node. More information about this can be found in Section 3.2.3.2.

3.1.2 SDN Switching Fabric

The FLAME platform demands an SDN-ŜƴŀōƭŜŘ ǎǿƛǘŎƘƛƴƎ ŦŀōǊƛŎ ƛƴǎƛŘŜ ǘƘŜ ƛƴŦǊŀǎǘǊǳŎǘǳǊŜΩǎ ƴŜǘǿƻǊƪ ƛƴ
order to program the forwarding rules via OpenFlow (Version 1.3 or above required). While software-
based SDN switches7 do not have any hardware constraints, SDN hardware switches are more limited

6 The SR implements part of the SFR component of the FLAME platform [FLAME-D3.10]. Said SR is called Service
Communication Proxy in the 3GPP SA2 notation [3GPP 23501] for service-based architecture (SBA), while the work in the IETF
SFC [SFC2019] defines the SR as the name-based Service Function Forwarder (nSFF)

7 Open source implementation version 2.10.1 and above from https://www.openvswitch.org

https://www.openvswitch.org/

Page 24 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

in what and how they support the OpenFlow specification and therefore how well they support the
forwarding rules of the FLAME platform.

Specifically, hardware switches translate rules that have been received via OpenFlow into an internal
ternary content addressable memory (TCAM) table, which in turn is used by the chipset to match
incoming packets against rules for Layer 2 through 4. The TCAM is limited in its size to guarantee the
link speed advertised by the vendor, while larger TCAM tables will increase the overall SDN price point
exponentially. To support all sorts of tenants, an SDN switch must support switching protocols such as
MPLS and VLAN as well as OpenFlow-based rules which results in a hybrid confirmation that essentially
splits the TCAM table into SDN and non-SDN areas. Given that TCAMs do offer several thousand entries
for rules, it must also be understood that, for example, IPv6 requires higher memory inside the TCAM
than IPv4 which further limits the number of rules a TCAM-based SDN switch accepts.

As OpenFlow only supports known header offsets of the IP protocol suite, FLAME semantically
overloads the IP (version 6 or 4) header with its rules, which are arbitrary bitmasks instead of longest
prefix. These rules, however, when hardware switches are being used, are getting translated into
longest prefix rules again, as this is the main semantic of operation that TCAMs and their chipsets have
been designed to do in SDN switches. As the arbitrary bitmask allows to have a single incoming packet
being matched against multiple output ports, the TCAM table must receive all possible combinations
of the arbitrary bitmask being translated into longest prefix again, inflating a single bit position
matching rule in many TCAM entries. This action could lead to limitations at hardware switches in the
infrastructure that have more than four or five output ports.

Across most deployments the very first dialog between the FLAME platform provider and the
ƛƴŦǊŀǎǘǊǳŎǘǳǊŜ ǇǊƻǾƛŘŜǊ ƛǎ Ƙƻǿ ǘƻ ŘŜǎƛƎƴ ǘƘŜ άǿƘƻƭŜǎŀƭŜ ƛƴŦǊŀǎǘǊǳŎǘǳǊŜ ǎƭƛŎŜέ ƛƴǎƛŘŜ ǿƘƛŎƘ ǘƘŜ C[!a9
platform operates as a tenant to the infrastructure. Without any exception across any replicator, the
slice is created using VLAN identifiers. Before diving into the challenges with SDN switches and 802.1a,
it must be understood that the FLAME platform does not and must not be aware of any VLAN
identifiers used to create the infrastructure slice for the FLAME tenant. The Path Computation Element
(PCE) of the FLAME platform calculates paths among SRs and retrieves the topology from the SDN
controller. As the PCE expects no switch rules to be ƛƴǎŜǊǘŜŘ ƻƴ ǘƘŜ ōǊƛŘƎŜǎ ƻŦ ǘƘŜ ƛƴŦǊŀǎǘǊǳŎǘǳǊŜΩǎ {5b
switches, it first flushes all previously installed ones (from previous FLAME deployments) and inserts
the rules needed to enable the path-based forwarding, which essentially is one rule per port8. In order
to have SDN hardware switches to present a bridge to the SDN controller with access (untagged) ports,
the infrastructure provider must untag all packets on a dedicated bridge on the switch first, which is
then wired up to the ports for the infrastructure tenant. In SDN mode, the switch does not allow to
present access ports to the SDN bridge presented to the tenant (i.e. the PCE).

3.1.3 OpenStack Configuration

From an OpenStack perspective, it is important to understand that the FLAME platform performs the
crucial routing of service requests within the platform, which is implemented through the
aforementioned SR functionality of the SFR component. With this, the routing of service provider
traffic between SRs is located outside of OpenStack, while the platform is being deployed into the
infrastructure via OpenStack. However, how to route, security configurations of networks and VM
access, is all expected to be programmable through the OpenStack CLI. In comparison to typical Telco-
deployments that use OpenStack, this results in some crucial differences regarding potential

8 In Open vSwitch and when monitoring the OpenFlow protocol FLAME inserts one rule per outport. As states in the same
section, the TCAM is implemented for longest prefix only and does translate the rules into a larger set of rules.

Page 25 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

performance implications, how Telcos assume security of their VNFs is being configured and how much
of what OpenStack provides is disabled and lifted up into the VNF again.

One of the first changes all infrastructure providers have to make is to allow the FLAME tenant to
deploy into particular compute nodes, especially when they are all configured into the same availability
zone, since it is the FLAME platform that manages and controls the placement of service provider
functionality throughout the deployment infrastructure. In a traditional cloud environment this
capability is not required as OpenStack determines the most suitable compute node into which the
instance should be placed (and reserves the right to change that).

The FLAME platform deployment itself is orchestrated via HEAT templates, which must be enabled as
well as the deployment from outside of the controller itself. As the FLAME platform manages the
firewall configurations for each provider network it manages, port security must be enabled inside
OpenStack as well as the ability to use security groups.

Lastly, the FLAME platform and all clients that attach to SRs act in a single /16 subnet, thus behaving
like if they are all part of the same LAN. In order to configure sǳōƴŜǘǎ ŦƻǊ ŜŀŎƘ {wΩǎ [!b ǇǊƻǾƛŘŜǊ,
network OpenStack must allow the configuration of multiple /24 subnets of the same /16 CIDR.

3.2 !w59b¢ ¢hh[

In recent years, the acceptance and adoption of cloud principles in telecommunication systems has
significantly increased, with companies such as Suse, RedHat and Canonical offering the required
knowledge and solutions (as-a-service) to operators and infrastructure providers. The shift towards
VNFs and cloud-native deployments replicates the successful model of cloud companies and how they
can scale their services into a business sector which traditionally preferred physical boxes and
functions with a clear one-to-one relationship in execution and state handling. This opens the floor for
fully software-based approaches that can operate on commodity hardware. While this shift in itself
demands a significant change of how telecom solutions are architecturally designed and built, the
FLAME platform and its internal components are a perfect example of how customer service
deployment but also the routing of service requests can be softwarised to offer a truly innovative
platform. With this in mind, the deployment of such a platform into a cloud-based infrastructure is
challenging when enforcing and demanding a truly programmable infrastructure, which includes the
programmability of security, switches, and hybrid cloud resources.

In order to automate the actual deployment process of a platform that requires particular components
at specific (edge) cloud locations, an Automated platfoRm DEploymeNt Toolchain (ARDENT) has been
designed, specified and implemented as a proof-of-concept for the deployments of the FLAME
platform in Barcelona and Bristol. Additionally, ARDENT is also in use for the deployment of the FLAME
platform into the sandpit in Southampton and for the deployment of the FLAME platform into
LƴǘŜǊ5ƛƎƛǘŀƭΩǎ ǘŜǎǘƛƴƎ ƭŀō ƛƴŦǊŀǎǘǊǳŎǘǳǊŜΦ

Initially, a proof-of-concept was developed using Bash and AWK. Once ARDENT moved more into a
flexible toolkit to deploy (and replicate) the platform across sites or accommodating changes in the
infrastructure, ARDENT was fully re-engineered from scratch using Golang and MySQL to provide a
standalone application with RESTful service endpoints to offer a more service-oriented approach to
the deployment of a 5G platform.

Page 26 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

3.2.1 Purpose and Workflow

The figure below illustrates the ARDENT workflow to deploy the FLAME platform. The four circles
represent the major steps to achieve this goal and the responsibility is split between the infrastructure
and platform providers, as indicated.

Figure 11: Workflow for deployment of platform using infrastructure and platform descriptors

The very first step for an infrastructure provider is to plan the resources that should be given to the
infrastructure tenant, i.e., compute, storage and networking. The creation of the various networks for
data plane as well as management plane is part of this procedure and results in the infrastructure set-
up.

The infrastructure descriptor is a YML-based descriptor communicating the components of the
infrastructure topology (compute nodes, infrastructure services, SDN switching fabric) as well as their
physical connection and the names of the provider networks.

From the infrastructure descriptor the tenant variables are derived and populated in a knowledge base
which is shared with the next three tasks, i.e. setting up the tenant, creating the platform descriptor
and eventually deploying the platform.

The tenant set-up is a collection of bash scripts with several variable files which comprise
infrastructure provider-independent and infrastructure provider-specific values. The scripts allow the
infrastructure provider to a) set up the FLAME tenant using an automated procedure and b) to share
all necessary values that describe the NFV platform and allows the platform provider to write the
platform descriptor and to deploy the platform eventually.

Given that OpenStack is the chosen NFV realisation the platform descriptor is a HEAT-based YAML file
describing where certain platform instances are deployed and which networks they attach to. The
information required to write the platform descriptor is taken from the infrastructure descriptor and
the variable files written during the tenant set-up activity.

The last step is platform deployment where the platform descriptor is given to OpenStack via its CLI.

3.2.2 Networks, Subnets and Security Groups

Figure 12 illustrates the provider networks including their purpose on the infrastructure level.

Page 27 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

Figure 12: Infrastructure Tenant Networks and their Purpose

The platform networks allowing access to infrastructure resources are:

¶ WAN: The network to access the internet through one or more IP gateways of the

infrastructure provider and a dedicated DNS (if provided). If the infrastructure provider does

not maintain their own DNS, a public DNS is used (e.g., OpenDNS or Google). This network

must be configured with DHCP, a gateway and a DNS server

¶ SDNCTRL: The network to reach the SDN controller from any deployed platform instance. This

network must be configured with DHCP but no gateway or DNS server

¶ DATA: The network for interconnecting the compute nodes via the underlying SDN switching

fabric of the infrastructure provider. Note, most infrastructure providers create dedicated

DATA networks between a SDN switch port and a compute node often using VLANs. Therefore,

the number of DATA networks very often equals the number of SDN ports configured for the

platform. This network is treated by the platform as an L2 link and does not require any IP

configuration in the NFV platform. If the infrastructure provider does not own its own SDN

switching fabric, a single DATA network must be created to allow platform instances to

communicate with each other.

¶ ACCESS: The network which allows the platform to handle traffic from end devices connected

to the infrastructure via point of attachments (WiFi, cellular, cable). Similar to the DATA

network, the ACCESS network is most likely also configured using VLANs and one network per

Point-of-Attachment (PoA) is therefore created to connect the PoA and specific compute node.

The IP assignment of IP endpoints attached to this network is done via a platform service rather

than an infrastructure one. The platform provider refers to this network as the LAN.

¶ SIA: This network provides a secured inbound access (SIA) towards the FLAME frontend

platform instance, which allows service providers to deploy and maintain their service function

chains.

For managing the platform instances a MGMT network is required which allows the platform provider
to manage and maintain its deployed platform instances.

Furthermore, the following platform networks are required:

¶ CLMC: The network that allows to let the CLMC and its SR to communicate via IP.

Page 28 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

¶ CLUSTER: The network that allows a cluster instance to communicate via IP with its SR.

¶ PS: The network that allows the PCE/SFEMC instance and all platform service instances to

communicate with their SR.

¶ MSP: The network that allows a media service provider to access the orchestrator, CLMC and

the service function repository to create, maintain and configure their deployed service

function chains.

The table below lists the various networks, subnets and security groups described above and
summarises their properties and when they are created by whom during the workflow, as described
in Section 3.2.1. If a security group is not configured for ports on a provider network the port security
Ƴǳǎǘ ōŜ ŘƛǎŀōƭŜŘΦ bƻǘŜΣ ǘƘŜ άŎǊŜŀǘŜŘ ǿƘŜƴέ ŎƻƭǳƳƴ ǊŜŦŜǊǎ ǘƻ ǘƘŜ ǎǘŜǇǎ illustrated in Figure 11.

Table 1: Networks, Subnets and Security Groups for FLAME Platform

Network
Type

Created By Subnet DHCP IP
GW

DNS Security Group

Configured Created by Configured Created by

WAN Infrastructure
Provider

Yes Infrastructure
Provider

Yes Yes Yes Yes Infrastructure
Provider

SDNCTRL Infrastructure
Provider

Yes Infrastructure
Provider

Yes No No Yes Infrastructure
Provider

DATA Infrastructure
Provider

No --- --- --- --- No Infrastructure
Provider

SIA Infrastructure
Provider

Yes Infrastructure
Provider

Yes No No Yes Infrastructure
Provider

ACCESS Infrastructure
Provider

Yes ARDENT Yes No No No Infrastructure
Provider

MGMT Infrastructure
Provider

Yes Infrastructure
Provider

Yes No No Yes Infrastructure
Provider

CLUSTER Infrastructure
Provider

No ARDENT Yes Yes Yes No Infrastructure
Provider

PS Infrastructure
Provider

No ARDENT Yes Yes Yes No Infrastructure
Provider

MSP Infrastructure
Provider

No ARDENT Yes No No Yes Infrastructure
Provider

3.2.3 Automations Performed by ARDENT

In Telco-oriented infrastructures various types of edges exist which are categorised into data centres,
edge and far edge. Most likely the following compute node characteristics for each type of tier applies:

¶ Data Centres: Compute nodes of this type are far away from any point of attachment and are
high in compute resources.

¶ Edge: Compute nodes of this type are usually near infrastructure switches where the
underlying network branches off into different directions to reach areas of PoAs.

¶ Far Edge: Compute nodes of this type are one or two hops away from a PoA to keep latency
and jitters at a bare minimum, supporting VR-type of services.

¶ Mist: Compute nodes of this type have very constraint cloud resources and are located at the
very front of the network.

Page 29 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

Once the infrastructure descriptor has been communicated to ARDENT there are several automations
taking place, eventually resulting in a single HEAT template describing the deployment of the platform.
In order to achieve such automation, there are certain criteria which help to maximise the constraints,
such that the set of options becomes limited.

Certain set of platform components are grouped together and are deployed on the same compute
node. Those groups are:

- SR, PS and PCE

- SR and CLMC

- SR and Cluster

- Monitoring Server (MOOSE)

- Frontend

- SRPoA (providing access to UEs)

The aforementioned groups can be templated as HEAT orchestration templates (HOTs) which are
called by an overarching HEAT orchestrator template, which feeds missing values for various types of
variables into it. Given the requirement of usage for various platform components, their templated
HOTs can be directory mapped to a tier, as shown in the table below

Table 2: Platform components per compute node tier level

Tier Platform Components

Data Centre - SR, PS, NM and PCE
- SR, SFEMC and CLMC
- SR and Cluster
- MOOSE
- Frontend

Edge - SR and Cluster

Far Edge - SR and Cluster
- SRPoA

Mist - SRPoA

3.2.3.1 CIDR and Routing Prefixes for SRs

The infrastructure provider communicates the CIDR to the platform provider via the infrastructure
descriptor. The CIDR for the platform must be a /16 or larger one, as each SR requires a /24 subnet.
Consequently, a a.b::16 CIDR allows ARDENT to generate 254 SRs with routing prefixes of format
a.b.n::24 where n={1,254}.

While it does not quite matter which SR receives which routing prefix, it has become a common
practice to have the SR serving the internet to receive n=1, the SR serving the SFEMC/CLMC n=2,
followed by the SRs for all clusters and then the SRs for PoA/access networks.

All SR and cluster OpenStack instances perform DHCP to receive their IP addresses. Those IP addresses
are assigned ōȅ hǇŜƴ{ǘŀŎƪΩǎ 5I/t ǎŜǊǾƛŎŜΦ IƻǿŜǾŜǊΣ ŦƻǊ ŘŜǇƭƻȅŜŘ ǎŜǊǾƛŎŜ ŦǳƴŎǘƛƻƴ ŜƴŘǇƻƛƴǘǎ όas LXD-
or KVM-based instances inside clusters) or UEs attached to access networks, the IP addresses are
ƘŀƴŘƭŜŘ ōȅ ǘƘŜ ǇƭŀǘŦƻǊƳΩǎ 5I/t ǎŜǊǾŜǊ ƛƴǎƛŘŜ ǘƘŜ t{ ƴƻŘŜ ŀƴŘ ƛǘ must be ensured that the two IP
addressing spaces (in OpenStack and in DHCP server) do not clash. Therefore, all SRs and clusters have
a subnet configured of range a.b.c.0/29 with Class D values of .1 and .2 reserved for OpenStack;
consequently, the range configured is .3 through .7.

Page 30 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

3.2.3.2 Cluster Flavours and Compute Node Categories

As mentioned in the introduction of this section, all flavours except the ones for clusters are fixed. The
reason for that is to max out the wholesale slice configured by the infrastructure provider. In the
following, we present those compute node categories in more detail.

Data Centre As listed in Table 2, all control functions of the platform are placed into compute node(s)
of type data centre such as PCE, PS, CLMC, SFEMC and frontend. The flavour properties for each
aforementioned type is listed below.

If only one data centre compute node is available, then all control functions of the platform are placed
into the single node. If the RAM is not sufficient enough to host the memory intense instance CLMC,
its RAM requirement can be reduced to half of its size if necessary. Then, the data centre cluster can
be calculated by adding an additional SR for serving the cluster and give all the remaining vCPUs, RAM
and disk to the cluster. If the resulting cluster flavour is less than 2 cores, 2GB RAM or 2GB disk the
cluster is not created by ARDENT.

If the data centre is composed of more than one compute node, then all control functions (and their
SRs) are placed on one compute node and each other compute node receives an SR with a cluster
which maxes out the resources on each.

Unless the WAN provider network has not been made available to all data centre computer nodes,
ARDENT uses the first data centre compute node as the one which hosts the control functions (PS in
particular). If the WAN provider network has been made available at a particular compute node only,
then ARDENT uses that one for all control functions.

Note, SRs and their IP endpoints (clusters and PSs in particular) must never be placed on different
compute nodes to avoid performance bottlenecks of the link (network card) between the SR and its IP
endpoint.

Table 3: Flavour properties for control functions of the platform

Node Type vCPUs RAM [MB] Disk [GB]

PCE 1 1536 15

PS 1 1024 100

SFEMC 1 1024 15

CLMC 4 32768 100

MOOSE 1 1536 15

Frontend 1 1024 5

SR 1 1024 10

Edge Compute nodes of this type host SR and cluster bundles only, as these compute nodes do not
have access networks attached to them due to their ǇƘȅǎƛŎŀƭ ǇƭŀŎŜƳŜƴǘ ƛƴ ǘƘŜ ƛƴŦǊŀǎǘǊǳŎǘǳǊŜΩǎ
network. Hence, each edge compute node receives a single SR and a cluster that maxes out the cloud
resources.

Far Edge This compute node has access networks attached to it but it is still large enough to host a
SR+cluster bundle. As not all far edge compute nodes are physically located at the PoA for UEs, multiple
access networks could be configured at a particular far edge compute node. In order to offer a cluster
per PoA in a far edge scenario, the following methodology must be applied to determine the number
of clusters and SRs on a far edge node: first each access network receives a SR. The remaining cloud
resources are then divided by the number of access networks to be given to a SR+cluster bundle.

Page 31 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

As the specification for a different compute node of the same category can be different, ARDENT
creates a cluster flavour per data centre/far edge compute node.

Mist This compute node has access networks only attached and therefore hosts SRs only. Taking the
cloud resource requirements for SRs into account, ARDENT creates one SRPoA per access network on a
compute node of tier mist. If the resources are insufficient ARDENT will not deploy the stack.

3.2.3.3 Fixed IP Addresses

The platform nodes PS, frontend, SFEMC, CLMC, and MOOSE have some ports with fixed IP addresses
assigned to them for various purposes. Those IPs are derived from the routing prefix the SR has been
configured to:

Table 4: Fixed IP addresses

Node Port Type IP Address

PS LAN a.b.n.1

PS MSP c.d.e.<MIN>

SFEMC MSP c.d.e.<MIN+1>

CLMC MSP c.d.e.<MIN+2>

MOOSE MSP c.d.e.<MIN+3>

Frontend MSP c.d.e.<MIN+4>

with ΨeΩ being the highest class C value possible from the CIDR provided by the infrastructure provider,
i.e. 255 for a /16 CIDR. As the MSP subnet is a /24 again, ARDENT determines <MIN> (Class D value of
the IP address) as .3 leaving .1 for the IP GW service in OpenStack for this subnet and .2 for the DHCP
service.

3.2.4 Architecture

The figure below illustrates the architecture of ARDENT with components and interfaces. Following
the workflow described in Section 3.2.1, ARDENT has three main groups of interfaces:

¶ Infrastructure provider to submit the infrastructure descriptor

¶ OpenStack CLI to configure the admin and tenant environment

¶ Interface into ARDENT to customise platform stack

These components and interfaces are described in Section 3.2.4.1 and 3.2.4.2, respectively.

Page 32 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

Figure 13: ARDENT Architecture

3.2.4.1 Components

This section describes the components of the ARDENT architecture including their purpose and scope.

Infrastructure Provider

Instead of a pure software component this element is a person or a group of people. They write the
infrastructure descriptor, which communicates various aspects of the infrastructure that an OpenStack
tenant cannot reverse engineer when using the OpenStack CLI only. The information includes:

¶ Compute node names and their tier level

¶ Network names and their type

¶ Subnet names and their type

¶ Other variables such as infrastructure services, CIDR, MTU, tenant identifier and IP address of

the OpenStack controller

ARDENT Application

This component represents the actual process that offers the various service APIs and executes the
changes an ARDENT user configures via the GUI.

Database

The database holds all states the ARDENT application obtains and/or changes and allows the GUI
component to obtain the required information to visualise the stack across all tiers.

Page 33 of 46

© InterDigital Europe and other members of the FLAME Consortium 2019

Figure 14: ARDENT database schema

Backend

This component provides the ability to interact with the database on behalf of the frontend. Given that
there is no graphical frontend foreseen anytime soon the realisation of this component is embodied
by phpMyAdmin.

Frontend

This component allows the platform provider to obtain information about the HEAT orchestration
template, which was determined by ARDENT after having received an infrastructure descriptor.
Furthermore, the frontend allows to conduct sanity checks and to create/delete stacks. For simplicity
reasons this component provides a CLI only.

The graphical user interface of ARDENT allows the platform provider to get a visual representation of
the (to be) deployed platform stack. The servers of the platform stack are categorised using the
compute nodes and their tier levels (data centre, edge, far edge). Furthermore, the GUI illustrates the

