

FACILITY FOR LARGE-SCALE ADAPTIVE MEDIA EXPERIMENTATION

FLAME Service Delivery Platform

Sebastian Robitzsch

InterDigital Europe

FLAME Platform

FLAME Platform in Bristol

Foundational Media Services

- FLAME identified a set of services which are commonly used by service providers
- FMS are pre-packaged SFs uploaded to the platform's SF repository
- All FMS offer a RESTful API utilising the advances of the platform for HTTP-based services

Foundational Media Services

- Set of commonly used services provided to experimenter:
 - Content ingest and storage
 - Adaptive streaming
 - Transcoding, transrating and content conditioning
 - Media quality analysis
 - Proxy storage

Content Ingest and Storage

- Module for ingestion, storage and retrieval of assets
- Common functionality required by media service providers
- It includes a simplified database to keep some information about the stored contents
- Working as content repository, interoperating with the rest of FMS

Metadata Database for Audio & Video Content

- Required by media services to store information about the content
- Schema by default and methods to charge a personalised one
- Technical parameters of the contents
- Spec for content description (e.g., asset name)

assetQualityIndicators

idContent
idUser
totalBitrate
videoBitrate
videoResolution
videoFrameRate
encodingCRF
visualQualityEstimator

assetObjetiveParameters

idcontent
idUser
fileSize
fileFormat
duration
videoResolution
videoAspectRatio
videoFrameRate
videoBitrate
videoEncodingFormat
dateUpload
idAudioTrack

audioTracks

idAudioTrack numberOfChannels audioEncodingFormat audioBitrate audioLanguage assetDescription

idContent idUser genre subgenre assetName assetDescription

Adaptive Streaming

- Offers MPEG DASH and HLS
- Resolution and bitrate is automatically adapted depending on the network and receiver capabilities

Current implementation conceived for video-on-demand

Transcoding, Transrating and Content Conditioning

- Transcoding: encoding process in a different format to increase compression
- Transrating: encoding process in the same format to increase compression
- Conditioning:
 - Transcoding / transrating at different bitrates
 - Segment alignment to enable switching between qualities
- AVC and HEVC encoding formats

Media quality analysis

- Extraction of technical parameters
- First approach for quality estimation (e.g., video bitrate)
- Based on ffmpeg (ffprob)
- Consistent with metadata database

Proxy Storage

- Complements storage FMS
- 1 master storage and n proxy caches at edge
- If web resource is not available it is fetched from master.
 - Otherwise, resource is served from proxy cache
- Comes with default caching strategies

Experimentation API

Workflow

Service Preparation •Decomposing service into service functions

SF Packaging Provisioning

- Package service functions as KVM or LXD images
- •Upload images to the SF repo of the platform

Orchestration

- •Write resource descriptor defining nodes and policies
- Push to Orchestrator

Running Media Service

- Write alert descriptor
- Monitoring via CLMC
- •Lifecycle Management via TOSCA policies (alert descriptor)

TOSCA in FLAME

- TOSCA is used to communicate desired resource orchestration
- FLAME TOSCA is TOSCA compliant: only new types are defined on top of TOSCA NFV standard
- Node and policy types specified to define service deployment and lifecycle of service function endpoints

Adoptions from TOSCA

<u>item</u>	Relevant for FLAIVIE
Node Templates	✓
Groupings	✓
Relationships	X
Policies	✓

(Build-)Plans

FLAME Definitions in TOSCA - Nodes

- FLAME defined their own type of SF Endpoint type
- Applies for every node which can be managed by SFEMC:

eu.ict-flame.nodes.ServiceFunction

- Within this element, properties are specified such as
 - Addressable FQDNs (SF Identifiers)
 - Hypervisor-type (KVM or LXD)
 - URL from where the packaged SF can be retrieved
 - SF cloud properties (vCPUs, RAM, disk)

FLAME Definitions in TOSCA - Policies

- TOSCA Policies are a type of requirement that govern use or access to resources which can be expressed independently from specific applications
- We have defined two types of policies so far:
 - Initial Policy: A special policy type and is defined as
 eu.flame.policies.InitialPolicy and these labeled policies shall be processed
 only at the beginning of the run-time of the deployment. It determines the
 first targeted state for the deployed nodes.
 - State Change Policy: The second policy is defined as
 eu.flame.policies.StateChange and represents the FLAME-specific policy
 templates. Within this type of policies, we enhanced the policy's elements
 with a time element which allows scheduling of the policy (i.e., when the
 policy is active).

Lifecycle Management

- States are self-defined lifecycle keywords for the work with the State Machine inside the SFEMC. Allowed target states are:
 - eu.ict-flame.sfemc.state.lifecycle.connected: Push the Endpoint to CONNECTED state,
 - eu.ict-flame.sfemc.state.lifecycle.booted: Push the Endpoint to BOOTED state,
 - eu.ict-flame.sfemc.state.lifecycle.placed: Push the Endpoint to PLACED state

Resource Descriptor Example


```
tosca definitions version: tosca simple profile for nfv 1 0 0
description: | Template for de
metadata: template name: PR
template author: Sebo
                   topology template:
template version: 1.0
servicefunctionchain: pr
imports: - flame defin
                   policies:
topology template:
                        - init:
 node templates:
  protest-service:
                             type: eu.ict-flame.policies.InitialPolicy
    type: eu.ict-f
    capabilities:
                             description: Start the nodes initially
      properties:
                             triggers:
       num cpus:
       mem size: 2
                                inital trigger:
       disk size:
    properties:
                                   condition:
     hypervisor: lxc
     image url: http
                                     constraint: initialize
     identifiers:
      - fqdn: prote
                                  action:
       force get:
 policies: \
                                     protest-service:
  - init:
     type:
                                        dc8-sr3-cluster1-cluster: eu.ict-flame.sfe.state.lifecycle.connected
     descri
     trigger
                                        m-sr1-cluster1-cluster: eu.ict-flame.sfe.state.lifecycle.placed
      inital
       condit
                                        t1-sr1-cluster1-cluster: eu.ict-flame.sfe.state.lifecycle.placed
         const
       action:
                                        t3-sr1-cluster1-cluster: eu.ict-flame.sfe.state.lifecycle.placed
         protest
          dc8-sr
                                        t4-sr1-cluster1-cluster: eu.ict-flame.sfe.state.lifecycle.placed
          m-sr1-
          t1-sr1-
                                        t5-sr1-cluster1-cluster: eu.ict-flame.sfe.state.lifecycle.placed
          t3-sr1-
          t4-sr1-c
                                        t6-sr1-cluster1-cluster: eu.ict-flame.sfe.state.lifecycle.placed
          t5-sr1-clu
          t6-sr1-clust
```

Resource Descriptor Example


```
policies:
  - init:
     type: eu.ict-flame.policies.InitialPolicy
     description: Start the nodes initially
     triggers:
      inital trigger:
        condition:
         constraint:
                     - high latency check:
        action:
         protest-serv
                                type: eu.ict-flame.policies.StateChange
          dc8-sr3-c
          m-sr1-clu
                                description: Check Latency and peform a connect of another node ...
          t1-sr1-c
          t3-sr1-c
                                triggers:
          t4-sr1-
          t5-sr1-
                                   check trigger:
          t6-sr1
- high latency check:
                                     description: Check high latency on relationships
     type: eu.ict-flame
     description: Check
                                     condition:
     triggers:
      check trigger:
                                        constraint: clmc::service latency exceeded
        description: C
        condition:
                                        period: 600 # integer required, unit: seconds
         constraint:
         period: 600
                                     action:
        action:
         protest:
                                        protest:
          m-sr1-clus
                                          m-sr1-cluster1-cluster: eu.ict-flame.sfe.state.lifecycle.connected
```

Alert Descriptor Example


```
tosca definitions version: tosca simple profile for nfv 1 0 0
description: TOSCA Alerts Configuration document
imports:- flame clmc alerts definitions.yaml
metadata:
 servicefunctionchain: companyA-Vr
topology template:
policies:
                    - high latency policy:
   - high_latency_poli
          w.ict-fl
                             type: eu.ict-flame.policies.Alert
     trig
                             triggers:
                                service latency exceeded:
        condi
                                   description: This event triggers when the mean network latency ...
         thre
         granu.
                                   event type: threshold
         aggreg
         resource
                                  metric: network.latency
          flame
         compariso
                                   condition:
        action:
         implement
                                     threshold: 45
          - flame
          - http:
                                     granularity: 120
                                     aggregation method: mean
                                     resource type:
                                        flame location: m-sr1-cluster1-cluster
                                     comparison operator: gt
                                  action:
                                     implementation:
                                        - flame sfemc
                                        - http://companyA.alert-handler.ict-flame.eu/high-latency
```


This project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 731677

