

WWW.ICT-FLAME.EU

Interaction and Service
Design Patterns in

FLAME
Michael Boniface (University of Southampton) | Dirk Trossen (InterDigital Europe)

31/07/2019

Interaction and Service Design Patterns in FLAME

Page 2 of 13

© Copyright InterDigital Europe, University of Southampton
and other members of the FLAME Consortium 2019

Grant Agreement No.: 731677
Call: H2020-ICT-2016-2017

 Topic: ICT-13-2016
Type of action: RIA

DISCLAIMER

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731677.

This document reflects only the authors’ views and the Commission is not responsible for any use
that may be made of the information it contains.

Interaction and Service Design Patterns in FLAME

Page 3 of 13

© Copyright InterDigital Europe, University of Southampton
and other members of the FLAME Consortium 2019

1 SERVICE DESIGN FOR INTERACTIVE SYSTEMS

The design of real-time interactive systems must consider how experience, performance and cost
is influenced by the allocation of compute, storage and network resources necessary to process
and delivery services and content. Here we outline the general challenges for service developers
designing interactive systems and how the FLAME service delivery platform supports flexible
management and control of highly distributed micro-services.

1.1 SERVICE DESIGN

The FLAME 5G service delivery platform offers the capability to flexibly place and connect services
anywhere within the network from the far edge to the distant cloud. FLAME disrupts the prevalent
mobile cloud architectures of the last 10 years by providing ways for mobile edge computing
elements to be seamlessly used as part of the overall service execution environment. The
combination of far edge, edge and distant clouds compute resources along with flexible and fast
connectivity provides application developers with new deployment and scaling options, including
entirely localised services that do not rely on distant public clouds.

Figure 1: Evolution of service-based architectures from far edge to distant clouds

To benefit from this new distributed computing infrastructure a service developer must consider
a wider variety of deployment options and how to manage deployment changes at runtime in
response to demand. The computing infrastructure is now hierarchically scaled from small scale
devices, to larger edge DCs, metro DCs and finally public clouds with seemingly infinity resources.
Capacity constraints and costs of edge compute in comparison to the economies of scale achieved
in large data centres are all factors to consider in service management decisions.

Now the key to success is to architect service function chains in ways that allow agility, resilience
and scalability, taking into account the new opportunities opened up but also constraints imposed
by this new environment. Service developers should strive to build services that are flexible and
do not constraint business decisions. What this means is that a finer granularity in
application/service decomposition is needed to allow for service functions to be intelligently

Interaction and Service Design Patterns in FLAME

Page 4 of 13

© Copyright InterDigital Europe, University of Southampton
and other members of the FLAME Consortium 2019

deployed on the most appropriate computing resource. To achieve this, functions within thick
client applications on mobile devices and within monolithic services (typically deployed in the
distant cloud) need to be refactored to create collections of micro-services. This allows for
applications to offload to the edge or for services running in distant clouds to be placed closer to
the end user.

Micro-service architectures are not new. Typically, micro-services are deployed independently,
persist their own data/state, communicate through well-defined APIs, and may have entirely
different technology stacks. There are many benefits of micro-services including increased agility,
resilience, scalability, for highly distributed systems. However, these benefits come with their own
challenges in terms of increased system complexity, testing, and de-centralised governance.

FLAME’s distinct lifecycle management and control features deliver benefits to a set of micro-
service patterns specifically designed to support interaction between users through the content
they produce and consume. FLAME explicitly focuses on the relationship between interaction
design patterns and service design patterns to allow for a closer alignment and orchestration of
socially distributed services and a socially distributed virtual infrastructure.

1.2 PROGRAMMABLE MANAGEMENT AND CONTROL

FLAME’s platform management and control features are summarised in the white paper “Enabling
5G in FLAME” [5G_PAPER] and in detail within the FLAME Architecture [D3.10].

Service developers describe a service function chain, infrastructure resources and control policies
using a TOSCA resource specification template. The policies control the lifecycle state of service
function endpoints (SFE) placed within a distributed collection of data centres. The state machine
for the lifecycle of service function endpoints is shown in Errore. L'origine riferimento non è stata
trovata. including placed (Image deployed on cluster), booted (SFE booted on cluster) and
connected (SFE connected to network)

Figure 2: FLAME- Spanning from Distant to the Far Edge Cloud

The state of SFEs are changed at runtime using FLAME’s using cross layer management and control
which offers monitoring, measurement and analysis of service function chains considering both
temporal and dynamic topological characteristics of system elements contributing to
performance, as outlined in Figure 3. Service developers describe monitoring and alerts using a
TOSCA alert specification. This creates network-aware service function chains that allow
orchestration processes to understand how services respond to changes in workload and
resourcing, and how such changes can be used to design, adapt and trial policies.

Interaction and Service Design Patterns in FLAME

Page 5 of 13

© Copyright InterDigital Europe, University of Southampton
and other members of the FLAME Consortium 2019

Service developers are deeply familiar with scaling concepts that adapt the capacity of the system
to respond to changing demands. For example, “Scale Up and Down” increases, decreases or
upgrades instances for the needs of traditional cloud applications (e.g. increasing a server resource
using OpenStack) where as “Scale Out” adds more instances to a service, system or allocation
typically within a single data centre in response to changing demand (e.g. internal load balancer
such as Docker Swarm or Kubernetes).

With the increasing geographical distribution of data centres including those at the edge or even
far edge, policies now need to consider how to “Scale Geographically” allowing a service to scale
in response to geographic location. This is the focus of FLAME and the motivation for SFE lifecycle
states (PLACED, BOOTED, CONNECTED) controlled by policies and alert specifications.

Figure 3: Cross layer management and control

Interaction and Service Design Patterns in FLAME

Page 6 of 13

© Copyright InterDigital Europe, University of Southampton
and other members of the FLAME Consortium 2019

2 SERVICE DESIGN PATTERNS

In this section we describe a series of service design patterns highlighting common interactions
between service functions within a service function chain. The following list is not exhaustive but
representative in that it outlines useful patterns that specifically benefit from the features of the
FLAME platform.

2.1 OPPORTUNISTIC MULTICAST

Name Opportunistics Multicast

Pattern

Description Content is opportunistically delivered from a server to independently
operating clients through multicast groups that are determined dynamically by
requests for the same content at the same time. By tracking temporal
consistency of service requests for HTTP-based segments within the network
content is delivered in a multicast fashion, entirely based on interaction with
content streams, for example, starting at a specific point or pressing pause.
Such multicast delivery does not require explicit support, e.g., through
join/leave operations, by the client but is done transparently by the FLAME
platform. This is in contrast to existing IP multicast solution where such delivery
relation is static over a longer period of time, with explicit join and leave
operations performed at the receiving clients.

In the above example client 1 and 2 are considered to be in the same multicast
group if they request the same HTTP segment from SFE-1 at the same time, for
example starting to watch the same video together on different devices. If
client 1 and 2 pull at the same time the content is multicast at SR-1. If the clients
are attached to different SRs, the multicast delivery will be achieved only in the

Interaction and Service Design Patterns in FLAME

Page 7 of 13

© Copyright InterDigital Europe, University of Southampton
and other members of the FLAME Consortium 2019

joint delivery topology from the SFE-1 to the clients, while unicast delivery is
used for the rest of the delivery.

Service
Provider
Benefit

Network cost reduction due to reduced network usage as video is (partially)
multicast in segments of the network

Network cost reduction due to video being possibly front loaded to the edge

Service cost reduction due to reduced server usage as http requests are
suppressed when multicast occurs

Scale of supported end users when using contented access link such as WiFi.

Experience
Benefit

Reduction in start-up time for playout as segments are served from the
potentially closer edge playout point.

Improved quality of experience because of using less network resources due
to multicast delivery, therefore potentially reducing overall contention in the
network.

2.2 SYNCHRONISED PLAYOUT

Name Synchronised Playout

Pattern

Description This pattern extends the scenario in 2.1 by streaming a single video (e.g. 4K
360-degree video) to multiple clients from one synchronised playout point
avoiding the proliferation of unicast streams, using an HTTP-based chunk
request approach such as MPEG DASH or HLS. While the unicast semantic is

Interaction and Service Design Patterns in FLAME

Page 8 of 13

© Copyright InterDigital Europe, University of Southampton
and other members of the FLAME Consortium 2019

preserved, the delivery in the network is based on multicast replication on
segments of the network. Synchronization here can happen randomly (e.g., the
clients happen to request the same content at roughly the same time), or it can
be enforced through a dedicated synchronization client.

In the above example three SRs provide replication points for relaying
segments. Synchronisation is achieved when the same HTTP-based segments
are available for display at clients at the exact same playout time.

Service
Provider
Benefit

Network cost reduction due to reduced network usage as video is (partially)
multicast in segments of the network

Network cost reduction due to video being front loaded to the edge

Service cost reduction due to reduced server usage as http request suppression
when multicast occurs

Scale of supported end users when using contented access link such as WiFi.

Experience
Benefit

Reduction in start-up time for playout as segments are served from the
potentially closer edge playout point.

Improved quality of experience because of using less network resources due
to multicast delivery, therefore potentially reducing overall contention in the
network.

2.3 NEAREST PLAYOUT

Name Nearest Playout

Pattern

Interaction and Service Design Patterns in FLAME

Page 9 of 13

© Copyright InterDigital Europe, University of Southampton
and other members of the FLAME Consortium 2019

Description Serving requests from the closest service function endpoint where proximity is
defined as the number of hops from the client to the endpoint

The example shows three service function endpoints of the same type. Client
1 and 2 will be served by SFE-2 whilst client 3 & 4 will be served by SFE-3. No
requests will be served by SFE-1

Service
Provider
Benefits

Network cost reduction due to lower network usage as service/content is front
loaded to the edge

Overall costs may increase if the compute and storage usage for placing SFE on
edge DC’s in a connected state exceeds the cost of reduced network usage

Experience
Benefits

Reduction in start-up time for playout

Reaction time to latency changes

Latency stays comparable even when client moves, e.g., client 1 moves to SR3,
now being served from SFE3 instead of SFE1

Reachability of content from anywhere in the network

Other Assumption the closest SFE gives the best performance

2.4 PROXY CACHE PLAYOUT

Name Proxy Cache Playout

Pattern

Description Dynamically caching content close to the demand according to a specified
caching policy.

Interaction and Service Design Patterns in FLAME

Page 10 of 13

© Copyright InterDigital Europe, University of Southampton
and other members of the FLAME Consortium 2019

The example shows a master storage service SFE-1 serving content to four
clients. Client 1 and 2 are served by proxy service SFE-2 connected to SR-2
whilst client 3 and 4 are served by proxy service SFE-2 connected to SR-3. IF
client 1 accesses content the proxy service downloads the content from the
master and caches it automatically. If client 2 then requests the same content
it is served directly from the cache rather than the master.

Service
Provider
Benefits

Network cost reduction due to lower network usage as service/content is
automatically front loaded to the edge.

No content preloading required as caches are dynamically updated depending
on demand

User Benefits Reduction in start-up time for repeated playout

Reaction time to latency changes

2.5 CONTENT PLACEMENT

Name Content Placement

Pattern

Description Place content at a specific location within the network based on a prediction
where demand for that content is likely to be needed.

The example shows a service provider placing content at two service function
endpoints (SFE-2 and SFE3) that are closer to clients than SFE-1

Interaction and Service Design Patterns in FLAME

Page 11 of 13

© Copyright InterDigital Europe, University of Southampton
and other members of the FLAME Consortium 2019

Service
Provider
Benefits

Network cost reduction due to lower network usage as service/content is front
loaded to the edge.

Deployment of the content based on predicted demand

Content placement costs can be decreased through a synchronized HTTP-
based operation, resulting in multicast delivery of placed content

User Benefits Reduction in start-up time for playout

Other Future FLAME platform version will provide the ability to redirect negative
content requests, i.e., for content not being found locally, to other SFE
instances for potentially positive result (partial content placement)

2.6 APPLICATION FUNCTION OFFLOADING

Name Application Function Offloading

Pattern

Description Offload local device-centric functions to network computing resources.

The example shows a local function on a device (e.g. video processing)
offloaded to SFE-1 running on a compute resource (i.e. edge or cloud DC).

Service
Provider
Benefits

Assist end user with richer (in terms of functionality) SFE instance

User Benefits Increased battery life as processing can be offloaded to another compute
resource

Interaction and Service Design Patterns in FLAME

Page 12 of 13

© Copyright InterDigital Europe, University of Southampton
and other members of the FLAME Consortium 2019

Opportunity to utilize better device capabilities within the network (e.g.,
transferring presentation to alternative displays)

2.7 SCALE GEOGRAPHICALLY

Name Scale Geographically

Pattern

Description Change the lifecycle state of a new service function endpoint dynamically
within the network in response to changes in performance or usage.

The example shows client 1 and 2 initially being served by SFE1 (as their closest
instance), while an alert (e.g., based on measured latency at client 1 and/or 2)
triggers the lifecycle state change at SFE2 to CONNECTED, now serving the
content from a closer SFE instance to client 1 and 2.

Service
Provider
Benefits

Distribute compute resources more equally across available edge compute
cluster, serving more end users

User Benefits Reduced latency by either serving from nearer SFE instance and/or avoiding
overloaded original SFE instance

Interaction and Service Design Patterns in FLAME

Page 13 of 13

© Copyright InterDigital Europe, University of Southampton
and other members of the FLAME Consortium 2019

REFERENCES

[5G_PAPER] “Enabling 5G with FLAME”, 2019 https://ict-flame.eu/wp-
content/uploads/sites/3/2019/06/Enable-5G-with-FLAME-Whitepaper-v1.1.pdf

[D3.10] “D3.10: FLAME Platform Architecture and Infrastructure Specification V2”, FLAME deliverable
D3.10, 2018, available at https://www.ict-flame.eu/download/d3-10-flame-platform-
architecture-and-infrastructure-specification/?wpdmdl=1515&masterkey=5c790eda75dbb

