
Page 1 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Grant Agreement No.: 731677
Call: H2020-ICT-2016-2017

 Topic: ICT-13-2016
Type of action: RIA

D3.7: FLAME Technology Roadmap V2
 Dirk Trossen, Sebastian Robitzsch, Kay Hänsge (InterDigital Europe)

Michael Boniface (IT Innovation)

Carlos Alberto Martin Edo (ATOS)

Aloizio Pereira da Silva (UNIVBRIS)

15 December 2018

This report is the second technology roadmap for a ground-breaking media service delivery platform
being developed by the FLAME project. The report describes the software products to be delivered at
infrastructure, platform and media service layers and how combinations of products are used to
exploit the benefits of highly distributed software-defined infrastructures. Each product is described
in terms of features, baseline implementation technologies and release schedule. At the core of the
roadmap is the FLAME platform that brings together components for orchestration, Service Function
Routing, Service Function endpoint management and cross-layer management and control. A systems
integration and testing plan describes the DevOps environment including multi-project structure,
development workflows and continuous integration processes supported by build, provisioning,
configuration and automated testing tools. A software integration infrastructure is designed that
replicates a part of the production infrastructures in ways that allow flexible configuration of different
cross-component test scenarios. Finally, the downstream staging and production infrastructures are
summarised completing the end-to-end DevOps pipeline for efficient and high-quality delivery.

Page 2 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Work package WP 3

Task Task 3.5

Due date 30/10/2018

Submission date 11/11/2019

Deliverable lead InterDigital

Version 1.0

Authors
Dirk Trossen (InterDigital), Sebastian Robitzsch (InterDigital), Kay Haensge
(InterDigital), Michael Boniface (IT Innovation), Carlos Alberto Martin Edo (Atos),
Aloizio Pereira da Silva (UNIVBRIS)

Reviewers Gino Carrozzo (NXW), Steven Poulakos (Disney)

Keywords
Media Services, Software-defined infrastructures, technical roadmap, systems
integration, DevOps

Disclaimer

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 731677.

This document reflects only the authors’ views and the Commission is not responsible for any use that
may be made of the information it contains.

Project co-funded by the European Commission in the H2020 Programme

Nature of the deliverable: R

Dissemination Level

PU Public, fully open, e.g. web

CL Classified, information as referred to in Commission Decision 2001/844/EC

CO Confidential to FLAME project and Commission Services

Page 3 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

EXECUTIVE SUMMARY

This report is deliverable D3.7 FLAME Technology Roadmap V2 of the FLAME project. The document
describes the update of the roadmap for development, integration and production deployment of the
ground-breaking FLAME media service delivery platform.

The roadmap aims to deliver software products deployed as operational services on real-life software-
defined infrastructures for trials and experimentation. The primary purpose of the trials is to validate
the FLAME offering by delivering performance and cost benefits to media service providers and
enhanced quality of experience to end users.

A systems integration and testing plan describes the DevOps environment including multi-project
structure, development workflows and continuous integration processes supported by build,
provisioning, configuration and automated testing tools. A software integration infrastructure is
designed that replicates part of the production infrastructures in ways that allow flexible configuration
of different cross-component test scenarios. Finally, the downstream staging and production
infrastructures are summarised completing the end-to-end DevOps pipeline for efficient and high-
quality delivery. The overall roadmap is designed to ensure alignment of activities across all work
packages in the project from component development, integration through to trials and
experimentation.

This report updates the previously delivered report D3.5 by providing the feature plans for the
individual components of the FLAME platform based on the insights of the progressing development
and integration work since finalizing D3.5. Furthermore, the deliverable also provides an update to the
integration environments, now covering the chain from an early ‘sandbucket’ environment of the
sandpit used for staging and early verification of experiments down to the replication infrastructures
in Bristol and Barcelona.

Page 4 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

TABLE OF CONTENTS

1 INTRODUCTION .. 9

1.1 Purpose .. 9

1.2 Scope .. 9

1.3 Delivery Partners .. 10

1.4 Updates to Previous Roadmap Deliverable D3.5 ... 10

2 TECHNOLOGY ROADMAP OVERVIEW .. 11

2.1 Project Milestones ... 11

2.2 Overview of Software Products ... 11

3 PLATFORM PRODUCT ROADMAP .. 15

3.1.1 Platform Components and Features .. 15

3.1.2 Summary of Platform Releases .. 26

4 MEDIA SERVICE PRODUCT ROADMAP ... 29

4.1.1 Media Services Overview ... 29

4.1.2 Media Service Packaging and Provisioning .. 29

4.1.3 Media Component Products .. 30

4.1.4 Releases and Media Services Product Implementation Roadmap .. 32

5 INTEGRATION PRODUCTS ... 34

5.1 Sandbucket Environment ... 34

5.2 Sandpit Environment ... 35

5.3 Infrastructure Environment ... 39

5.3.1 Bristol Infrastructure .. 39

5.3.2 Barcelona Infrastructure (i2CAT) ... 42

6 CONCLUSIONS .. 44

Page 5 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

LIST OF FIGURES

FIGURE 1: FLAME PLATFORM ENGINEERING REPORTS ... 9

FIGURE 2: PLATFORM RELEASES IN RELATION TO PROJECT MILESTONES ... 11

FIGURE 3: FLAME SOFTWARE PRODUCTS IN RELATION TO ARCHITECTURE .. 12

FIGURE 4: HIGH LEVEL PRODUCT DEPENDENCIES .. 13

FIGURE 5: OVERVIEW OF SOFTWARE PRODUCT INTEGRATION AND RELEASE .. 13

FIGURE 6: ORCHESTRATION WORKFLOW THROUGH MEDIA SERVICES OR CLMC 16

FIGURE 7: RELEVANT ORCHESTRATION SERVICE FUNCTION CHAIN FOR ALPHA+ RELEASE 18

FIGURE 8: RELEVANT SFR SERVICE FUNCTION CHAIN FOR ALPHA+ RELEASE .. 22

FIGURE 9: CLMC SERVICE FUNCTION CHAIN .. 25

FIGURE 10: MEDIA SERVICES AND MEDIA COMPONENTS .. 29

FIGURE 11: SERVICE FUNCTION PACKAGING AND PROVISIONING WORKFLOWS 30

FIGURE 12: LOGICAL TOPOLOGY OF THE FLAME-IN-THE-BOX ENVIRONMENT 35

FIGURE 13: A LOGICAL TOPOLOGY OF THE SANDPIT ENVIRONMENT DATA PLANE 36

FIGURE 14: SANDPIT STACK .. 36

FIGURE 15: SANDPIT DEPLOYMENT .. 37

FIGURE 16: BRISTOL LOGICAL INFRASTRUCTURE CONFIGURATION ... 40

FIGURE 17: BRISTOL COMPUTE/STORAGE/NETWORK NODE SPECIFICATION ... 41

FIGURE 18: BRISTOL PRODUCTION INFRASTRUCTURE CONFIGURATION.. 41

FIGURE 19: BARCELONA PRODUCTION INFRASTRUCTURE CONFIGURATION ... 42

Page 6 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

LIST OF TABLES

TABLE 1: FLAME CONSORTIUM PARTNERS .. 10

TABLE 2: FLAME SOFTWARE PRODUCTS .. 12

TABLE 3: PARTNER RESPONSIBILITIES ACROSS PRODUCT IMPLEMENTATION, INTEGRATION AND
DEPLOYMENT ACTIVITIES.. 14

TABLE 4: ORCHESTRATOR FEATURES .. 17

TABLE 5: ORCHESTRATOR IMPLEMENTATION TECHNOLOGY SUMMARY ... 18

TABLE 6: SF ENDPOINT MANAGEMENT & CONTROL FEATURES ... 19

TABLE 7: SFEMC IMPLEMENTATION TECHNOLOGY SUMMARY .. 20

TABLE 8: SF ROUTING FEATURES ... 21

TABLE 9: SFR IMPLEMENTATION TECHNOLOGY SUMMARY ... 22

TABLE 10: CLMC FEATURES ... 24

TABLE 11: CLMC IMPLEMENTATION TECHNOLOGY SUMMARY .. 26

TABLE 12: PLATFORM FEATURE ROADMAP ... 28

TABLE 13: MEDIA COMPONENT PRODUCTS .. 32

TABLE 14: MEDIA SERVICES RELEASE PLAN ... 33

TABLE 15: SANDPIT INFRASTRUCTURE CAPACITY PLANNING ... 39

TABLE 16: BRISTOL INFRASTRUCTURE RESOURCE SPECIFICATION ... 40

TABLE 17: BARCELONA PRODUCTION INFRASTRUCTURE RESOURCE SPECIFICATION 43

Page 7 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

ABBREVIATIONS

AR Augmented Reality

AVC Advanced Video Coding

CDN Content Delivery Network

CI Continuous Integration

CLMC Cross-Layer Management and Control

CMS Content Management System

DC Data Centre

ETSI European Telecommunications Standards Institute

FQDN Fully Qualified Domain Name

FMI Future Media Internet

HTTP Hyper Text Transfer Protocol.

IP Internet Protocol

KPI Key Performance Indicator

MANO Management and Orchestration

NFV Network Function Virtualisation

PCE Path Computational Element

QoS Quality of Service

RC Release Candidate

SDN Software Defined Network

SF Service Function

SFC Service Function Chain

SFE Service Function Endpoint

SFEMC SF Endpoint Management and Control

SFR Service Function Routing

SR Service Router

TLS Transport Layer Security

Page 8 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

TOSCA Topology and Orchestration Specification for Cloud Applications

TRL Technology Readiness Level

UE User Equipment

VM Virtual Machine

VIM Virtual Infrastructure Manager

Page 9 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

1 INTRODUCTION

1.1 PURPOSE

This document describes the technical roadmap for implementation, integration, testing and
deployment of FLAME technologies supporting trials and experiments of media services on highly-
distributed software-defined infrastructures. The goal is to provide software development teams,
responsible for FLAME software products, and operations teams, responsible for service deployment,
with the feature release schedules and DevOps processes that ensure timely delivery and results to an
acceptable level of quality.

1.2 SCOPE

The project is structured into three iterative development phases aligned with the strategic activities
of the work:

 Jan-17 to Oct-18: Research and innovation foundations: design, implement and deploy the
Alpha release of the FLAME platform ready for trials in Bristol and Barcelona production
infrastructures.

 Nov-18 to Dec-19: Ecosystem building and disruptive experimentation: operate trials and
experiments to validate the platform, working on feature enhancements towards the Beta
release.

 Jan-20 to Jun-20: Sustainability: transition towards exploitation and sustainability, hardening
the platform for RC release and working closely with technology adoption partners

The high-level platform engineering cycle follows these project phases. The project is currently in the
“ecosystem building and disruptive experimentation” phase with the current deliverable forming part
of a series of public reports delivered in each phase (see Figure 1).

 Figure 1: FLAME platform engineering reports

This report is the second version of the roadmap with final updates planned to be delivered at the end
of the project. Related reports include:

 D3.9 [FLAME-D3.9] describes an series of updated scenarios and use cases for interactive
media using the platform

 D3.8 [FLAME-D3.8] describes an updated methodology for conducting urban scale trials that
explore the cross-layer and multi-stakeholder interactions within the systems-under-test.

Page 10 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

 D3.10 [FLAME-D3.10] describes the updated architecture and infrastructure specifications for
the FLAME platform, elaborating the use cases from D3.9, refining system requirements and
identifying platform components and interfaces.

D3.3 is the primary reference point for the initial technical roadmap because it provides the overall
structure of the platform and allows features and development tasks to be decomposed into areas of
work. D3.10 will provide an update to D3.3, as shown in Figure 1, which serves as a reference point for
this updated technology roadmap.

The target audience for this deliverable are developers working on FLAME software products,
infrastructure owners responsible for production deployment and wider stakeholders interested in the
FLAME offering, features and expected release schedules.

1.3 DELIVERY PARTNERS

The project is delivered by members of the FLAME consortium who have specific responsibilities for
implementation, operations, engagement and marketing of FLAME. The partners are referred to by
acronyms throughout this report as shown in Table 1.

Participant organisation name Short
Name

Country Roadmap Leadership Roles

IT Innovation Centre ITINNOV UK Platform, CLMC

Atos Spain SA ATOS Spain Media Services

InterDigital Europe Ltd IDE UK SFR, SFEMC

Fundacio Privada i2CAT, Internet I Innovacio
Digital a Catalunya

i2CAT Spain Barcelona Infrastructure
Operator

University of Bristol UNIVBRIS UK Bristol Infrastructure Strategy
& Operator

Nextworks NXW Italy Validation Experiment

Martel GmbH Martel Switzerland Media Services

De Vlaamse Radio En
Televisieomroeporganisatie NV

VRT Belgium Validation Experiment

The Walt Disney Company (Switzerland) GmBH DRZ Switzerland Validation Experiment

Eidgenoessische Technische Hockschule Zuerich ETH Switzerland Validation Experiment

Institut Municipal d’Informàtica de Barcelona IMI Spain Barcelona Infrastructure
Strategy

Table 1: FLAME consortium partners

1.4 UPDATES TO PREVIOUS ROADMAP DELIVERABLE D3.5

This deliverable revises the initial roadmap provided in D3.5 with updated feature plans (Section 3 &
4), using the insights of the initial development and integration efforts. It also introduces a revised
integration environment (Section 5), now providing a localized sandbucket environment as well as the
sandpit environment for early functional testing of media services together with the latest updates for
the available replication infrastructures in Bristol and Barcelona.

Page 11 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

2 TECHNOLOGY ROADMAP OVERVIEW

This section provides an overview of the technology roadmap and the software products provided by
FLAME with updates to release dates compared to the initial roadmap provided in D3.5.

2.1 PROJECT MILESTONES

FLAME plans three major releases of the FLAME offering within the lifetime of the project. The timing
of major releases is aligned with the timescales of trials. Each major release will include significant
feature enhancements within the overall offering across infrastructure, platform and media services.
A release at the project level indicates the launch of a “FLAME Service” for trials in contrast to the
release of specific software products that the FLAME Service depends on.

Figure 2: Platform releases in relation to project milestones

After the initial releases in Feb-18 (for the initially planned alpha release for internal testing), updated
releases are planned for Oct-18, Jan-19 and Dec-19 with the working names of Alpha, Alpha+, Beta and
Release Candidate (see Figure 2), respectively. The major releases correspond to milestones for FLAME
feature implementation. The project implements DevOps processes that offer greater agility in the
implementation of release of features. As such Minor releases will be delivered in between major
milestones to incorporate new features when they are available and hot bug fixes when they are
critical to service operations.

2.2 OVERVIEW OF SOFTWARE PRODUCTS

FLAME delivers three types of software products that reflect the layering in the architecture, as shown
in Figure 3 and described in Table 2.

Software Product
Type

Description

Platform Product A product offering flexible management and delivery of media services deployed on
replication infrastructures. Those infrastructure are provided by infrastructure
providers as a so-called Infrastructure Product. One platform product is expected to
be delivered. This product will be able to be configured for different replication
infrastructure. The platform product is the primary outcome of the FLAME project.

Page 12 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Software Product
Type

Description

Media Service
Product

A product offering content production, management and/or distribution features
that directly benefit from the features of the Platform Product. Many Media Service
Products are expected to be offered. The selection is based on the Media Service
products that benefit most from Platform Product features and are in demand for
delivery of new forms of user experience and social interaction.

Integration
Environment

An environment offering access to and management of infrastructure resources
based on specific hardware configurations. The infrastructure abstraction offered
must be common across all Infrastructure Products although it is expected there will
be some variation in function and performance for different Infrastructure Products.
Multiple integration environments are expected covering different integration,
staging and production environments. It is expected that those environments will
build on and adapt widely used open source available solutions, e.g. OpenStack1,
OpenDaylight2 and Floodlight3 and where necessary contributions will be made to
open source extensions of existing infrastructure products

Table 2: FLAME software products

Figure 3: FLAME software products in relation to architecture

Figure 4 and Figure 5 provide an overall summary of the approach. Software products are developed
within a dedicated continuous integration pipeline provided by the FLAME project. The integration

1 https://www.openstack.org/

2 https://www.opendaylight.org/

3 http://www.projectfloodlight.org/floodlight/

Page 13 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

environment of a sandbucket provides a virtual machine based environment that can be used by media
service providers to test key aspects of the orchestration and packaging of their media service. This
integration environment is also used for platform integration and testing before moving to the sandpit
environment. The sandpit is realized in dedicated server hardware, allowing for functional system-level
testing of both platform and media service products. For performance-related integration and testing,
the staging integration environment is being used, emulating the actual production environment as
closely as possible and putting emphasis on the performance aspects. Finally, the testing and
integration moves to the production (or experimentation) infrastructure with the previous phases
aiming to minimize said testing in order to maximize the utilization of the production infrastructure for
the actual service delivery.

Figure 4: High level product dependencies

Any changes to software products in the pipeline may trigger continuous integration tests for products
downstream in the pipeline that depend on the product. The level of automation in the continuous
integration process across products and the scheduling of integration tests at different phases in the
pipelines depends on the level of human control desired and the cost of integration testing. The final
stage of deployment on the production infrastructure can also form part of the continuous deployment
processes, however, this depends on the policy of infrastructure operators.

Figure 5: Overview of software product integration and release

Page 14 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

FLAME products are implemented, integrated and tested through contributions from multiple
organisations. Table 3 shows the distribution of responsibilities for technical partners contributing to
the implementation of the Platform product and Media Service products. Each component has an
owner responsible for delivery of the components to integration based on contributions from other
organisations.

Software Product Project Owner Responsibility

Integration
Environments

University of
Bristol

 Integration Infrastructure (ITINNOV)

 Bristol infrastructure (UOB)

 Barcelona infrastructure (i2CAT)

Platform IDE Orchestration (IDE)
o FLAME enhanced TOSCA specification language

(IDE)
o FLAME orchestrator (IDE)
o Platform orchestrator (IDE)
o Media service orchestrator (IDE)

 SF Endpoint Management and Control (IDE)

 SF Routing (IDE)

 Cross Layer Management and Control (ITINNOV)

Media Service Atos Media service selection, adaptation and packaging (Atos)

 Media service packaging (Martel)

 Media service monitoring (Atos)

Table 3: Partner responsibilities across product implementation, integration and deployment activities

Page 15 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

3 PLATFORM PRODUCT ROADMAP

A Platform Product offers flexible management and delivery of media services deployed on
Infrastructure Products described in Section 5. The Platform Product is the major software outcome of
FLAME providing advanced service management through Orchestration, Service Function Endpoint
Management and Control, Service Function Routing and Cross Layer Management and Control. The
overall benefits of the Platform are delivered through an aggregation of component features.

The following section provides an overview of the features as being implemented already in the Alpha
release and planned for the upcoming releases Alpha+ and beyond. New requirements have not
emerged during the initial implementation and integration work, confirming those presented initially
in the FLAME architecture specification D3.4. However, feature release dates have been adjusted in
some components, largely motivated by earlier realization in the initial Alpha release or by moving
them to later releases due to a recognized lower importance in initial validation and open call
experiments.

3.1.1 Platform Components and Features

This section describes the feature roadmap, service function chain, implementation technologies,
ownership of components that will form part of the Platform Product. Each service function chain is
analysed to determine the background technologies and the expected enhancements and adaptations
needed to deliver the features. The Technology Readiness Level4 is provided to give an indication of
the level of work that needs to be completed to ensure the component is ready for integration into
the Platform Product.

The ownership and licensing situation for components is identified including 3rd party licenses to
identify restrictions on access to the Platform Product. The Platform Product will be distributed as
software for deployment on production infrastructures by infrastructure providers initially (e.g. Smart
Internet Lab - University of Bristol and i2CAT) and then 3rd parties. The Platform Product will also be
made available for evaluation by 3rd parties for evaluation and trials. If restrictions are identified then
design and implementation decisions will be needed to isolate such components or seek alternative
implementations that are consistent with the usage objectives.

3.1.1.1 Orchestrator

The Orchestrator component supports the interaction with Cross-Layer Management and Control
(CLMC) and media components, leading to an orchestration of compute, storage, and communication
resources, including the suitable configuration for SF endpoint control policies.

The features of the orchestrator are defined in Table 4. These features are organised in accordance
with the interfaces towards other system components including:

 ETSI NFV MANO APIs, used to receive and parse a suitable TOSCA template that outlines the
required resources to be orchestrated

 Resource APIs: Used to receive a suitable TOSCA-based infrastructure resource catalogue that
can be used to match against orchestration requests

4 https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf

Page 16 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

 Orchestration APIs: Used to support the various orchestration frameworks and platforms
being utilised for FLAME, specifically those at the infrastructure, platform and media services
level. Figure 6 shows these levels of orchestration being realised through this feature.

Figure 6: Orchestration Workflow through Media Services or CLMC

Feature
ID

Req Feature Description Component
Interface

Release

ETSI MANO

ORCH-1 Req-O1 Provide TOSCA template to FLAME
platform orchestrator

ETSI MANO Alpha

ORCH-2 Req-O1
Req-O2
Req-O3
Req-I1

Parse FLAME-TOSCA, as defined in T4.1,
template and check for consistency

ETSI MANO Alpha+

Resource

ORCH-3 Req-I1 Receive TOSCA template as infrastructure
catalogue information

Resource dropped since
media
resources are
now deployed
in clusters

ORCH-4 Req-O2
Req-O3

Provide topology information towards SF
routing component

Resource now directly
queried by SFR
component

Orchestration

ORCH-6 Req-O1
Req-O2

Support container (lxc) based media service
orchestration

ETSI MANO Alpha+

Page 17 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Feature
ID

Req Feature Description Component
Interface

Release

Req-O3

ORCH-7 Req-O1
Req-O2
Req-O3

Full consistency checks of FLAME-TOSCA
template, including consolidating
deployment state with orchestration
request

ETSI MANO Alpha+

ORCH-8 Req-O2
Req-O3
Req-SEM1
Req-SEM3

Provide SF endpoint control policies in
TOSCA template extensions towards
SFEMC component

ETSI MANO Alpha

ORCH-9 Req-O2
Req-O3
Req-SEM1
Req-SEM3

Provide SF endpoint state information in
TOSCA template extensions towards
SFEMC component

ETSI MANO Alpha+

Table 4: Orchestrator features

The delivery is expected to be organised around key interface features. The SF Endpoint Management
and Control component is responsible for changing resource configurations in response to demands
expressed in the orchestration process by TOSCA [ETSINFV] templates being provided to the
orchestration component. Said TOSCA templates, which will be based on existing specifications for the
alpha release while envisioned to be extended for FLAME-specific requirements (e.g., to support geo-
location constraints) in the alpha+ and beta, are referred to as FLAME-TOSCA in our feature table. The
orchestration feature will initially merely separate the management from the control parts in the
extended TOSCA template. For this, the template is provided to the orchestrator component for the
initial placement as well as the SFEMC component for the control of the SFE. In turn, the necessary
information is provided to the SF Endpoint Management and Control component for the initialisation
of the SF endpoint state. The orchestration feature provides the suitable control policies to the SF
Endpoint Management and Control component, while the resource feature provides the suitable
topology information to the SF Routing component.

The relevant SFC for the alpha+ release is shown in Figure 7. The main interactions of the orchestration
component are illustrated there, i.e., first, the distribution of information derived from the received
TOSCA template to sub-components of the SF Endpoint management and control, second, as the SF
Routing components, specifically for the SF endpoint control policies, and finally the topology
information, obtained through the infrastructure provided resource information.

The Orchestrator component has been implemented using existing TOSCA parser and validation
software, adapted to the workflow of the orchestration and all features in Table 4 will be delivered as
part of the alpha+ release. The key for the alpha+ phase is to interface with the orchestration platforms
developed at the infrastructure level in Bristol and Barcelona, which is based on OpenStack5. We will
align the technology platform used in Bristol for the platform orchestrator, while initially using the
same platform for media service orchestration. Furthermore, we offer also (linux-)container-based
platforms for media services.

5 http://www.openstack.org

http://www.openstack.org/

Page 18 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Figure 7: Relevant Orchestration Service Function Chain for Alpha+ Release

Table 5 provides a summary of the orchestration implementation technologies including the licenses,
expected enhancements, foreground and TRL starting point. All background technologies of the
orchestration are offered on permissive software licenses that allows aggregation and distribution of
foreground in accordance with the Platform Product distribution within the project and beyond to 3rd
parties wanting to evaluate the software.

Service
Function ID

Technology
Starting
Point

License Expected enhancements Expected
foreground
ownership

TRL

Orchestration Open
Source
MANO

ASLv2 Parsing of TOSCA extensions to include
control policies

IDE 6

Table 5: Orchestrator implementation technology summary

3.1.1.2 SF Endpoint Management and Control

The SF Endpoint Management and Control component supports the orchestration process by adding
the flexible control capabilities outlined initially in D3.3 “FLAME Platform Architecture and
Infrastructure Specification V1” and updated in D3.10 by maintaining SF Endpoint instance state in
collaboration with the SF Routing component.

The features of the SFEMC are defined in Table 6. These features are organised in accordance with the
interfaces towards other system components including:

 Surrogate Policy Control: Used to receive and parse a suitable control policy from the
orchestration component, querying required monitoring data pertaining to such control policy
and realising a decision logic that matches the monitored data against the policy provided. This
feature mainly resides at the Service Function Control component.

 SF Endpoint Allocation: Used to initialise and maintain an SF Endpoint specific state as well as
the compute/storage images that define the SF Endpoint functionality, while also realising
delegated name authorisation for the SF Endpoint. This feature mainly resides at the Virtual
Instance Manager component.

Page 19 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Feature ID Req Feature Description Component
Interface

Release

Surrogate Policy Control

SFEMC-1 Req-SEM1 Parse surrogate policy based on TOSCA
template extension

Surrogate Policy
Control

Alpha

SFEMC-2 Req-SEM1 Parse surrogate policy based on FLAME-
TOSCA template extension

Surrogate Policy
Control

Alpha+

SFEMC-3 Req-SEM1
Req-SEM4

Query monitoring data Surrogate Policy
Control

Alpha

SFEMC-4 Req-SEM1
Req-SEM4

Offering an event interface to match
policy triggers and perform defined
actions

Surrogate Policy
Control

Alpha+

SE Endpoint Allocation

SFEMC-5 Req-SEM4 Initialise and maintain SF endpoint state SF Endpoint
Allocation

Alpha

SFEMC-6 Req-SEM4

Maintain SF endpoint compute/storage
images

SF Endpoint
Allocation

Alpha

SFEMC-7 Req-SEM2 Allow for delegated name registration for
SF endpoint images

SF Endpoint
Allocation

RC

Table 6: SF Endpoint Management & Control Features

The SFEMC component delivers features to the SF Routing component as part of the overall
orchestration process in general and the control process in particular. The delivery is expected to be
organised around key interface features. The SF Endpoint Management and Control component is
responsible for changing resourcing configurations in response to demands expressed in the
orchestration process by having received the suitable control policies from the Orchestrator
component. The surrogate policy control feature will establish suitable monitoring capabilities aligned
with the surrogate policy constraints defined. It will also realise the decision logic to match the
monitored data against said policy constraints. The SF endpoint allocation feature maintains the SF
endpoint state according to the control policy provided while utilizing the SF Routing component for
service routing related state changes of the SF endpoint.

The relevant SFC for the alpha release is shown in Figure 7 with the surrogate manager SF representing
the surrogate policy control and SF Endpoint Allocation features of the SFEMC in Table 6. The VIM SF
represents the functionality being used by available virtual instance platforms, such as KVM or LXC, in
our realisation. As can be seen, we foresee the interaction between Orchestrator component and
SFEMC to be realised between our extended functionality (i.e., the orchestration and the SFEMC
features of Table 6), while realising the initialisation and maintenance of the SF endpoint state through
suitably interfacing with existing VIM solutions, particularly KVM and LXC on Linux. While an ultimate
deployment of the SFEMC would foresee a single VM for this purpose, it is likely to utilise several VMs
for the FLAME-specific extensions and the re-used VIM parts.

As indicated in Table 7, all features of the SFEMC component will be available for the alpha+ release,
against which the roadmap in this deliverable is written against, apart from the delegated name
registration, which will be integrated in the RC release.

Table 7 provides a summary of the orchestration implementation technologies including the licenses,
expected enhancements, foreground and TRL starting point. All background technologies of the
orchestration are offered on permissive software licenses that allows aggregation and distribution of
foreground in accordance with the Platform Product distribution within the project and beyond to 3rd
parties wanting to evaluate the software.

Page 20 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Service
Function
ID

Technology
Starting
Point

License Expected enhancements Expected
foreground
ownership

TRL

Surrogate
Manager

FLIPS Access via
Consortium
Agreement

Realization of features according to feature
table

IDE 6

VIM OpenStack ASLv2 Integration IDE 6

Table 7: SFEMC implementation technology summary

3.1.1.3 Service Function Routing (SFR)

The SF routing component realises the service request routing at the data plane between media
components, including all operational and management features for supporting route changes,
registration of SF endpoints, etc.

The features of the SFR are defined in Table 8. These features are organised in accordance with the
interfaces towards other system components including:

 Protocol mapping: Used to map IP-based protocols onto Layer2 only transactions and restoring
the IP-level interactions at the egress of the FLAME network.

 Routing: Used to support various constraint-based routing decisions as well as manage the
topology and forwarding information used for the data plane, including the assignment of IP
addresses towards media components in the FLAME platform.

 Registration: Used to support the registration of service function endpoints (SFEs).

 Resource management: Use to support link failover and QoS through traffic classes

 Diversity support: Used to support multi-source retrieval, net-level indirection as well as in-
session switching for HTTP

 Mobility: Used to support direct path mobility of users as well as UE mobility use cases

 Security: Used to support data plane encryption and resilience for centralised components.

Feature
ID

Req Feature Description Component
Interface

Release

Protocol Mapping

SFR-1 Req-
SR1/2/3

Implement HTTP level protocol mappings
according IDE specifications for HTTP-over-ICN

HTTP/IP Alpha

SFR-2 Req-SR1 Implement IP level protocol mappings according
to IDE specifications for IP-over-ICN

HTTP/IP Alpha

SFR-3 Req-SR1 Implement IP multicast protocol mappings
according to IDE specifications for IP-over-ICN

HTTP/IP RC

Routing

SFR-4 Req-SR7 Support for shortest path routing HTTP/IP Alpha

SFR-5 Req-SR8 Support for geo constrained routing HTTP/IP RC

SFR-6 Req-SR9 Support for policy routing HTTP/IP RC

SFR-7 Req-
SR7/8/9

Parse topology information model

Topology target Alpha

SFR-8 Req.SR1/2 Support for topologies larger than 256 links Topology target RC

SFR-9 Req.SR1 Managed DHCP-based IP address assignment HTTP/IP Alpha+

Page 21 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Registration

SFR-10 Req.SR11 FQDN registration based on configuration FQDN Registration Alpha

SFR-11 Req.SR11 FQDN registration based on distribution protocol FQDN Registration Alpha+

Resource Management

SFR-12 Req.SR10 Support for traffic classes based on protocol
classes or FQDN

HTTP/IP RC

SFR-13 Req.SR12 Support for link failure through path updates HTTP/IP Alpha

Diversity support

SFR-14 Req.SR13 Support HTTP in-session switching HTTP/IP Alpha

SFR-15 Req.SR5 Support HTTP multi-source retrieval HTTP/IP RC

SFR-16 Req.SR4 Support HTTP net-level indirection HTTP/IP RC

Mobility

SFR-17 Req.SR6 Support UE-level inter-SR mobility HTTP/IP Alpha

SFR-18 Req.SR6 Support UE mobility in 5GLAN type environment,
i.e., SR integrated with UE

HTTP/IP RC

Security

SFR-19 Req-SR3
Req-S1

Support for HTTPS & TLS HTTP/IP Alpha

SFR-20 Req.SR1 Support against PCE failure HTTP/IP RC

SFR-21 Req.SR1
Req.SEM2

Support for FQDN authority delegation HTTP/IP RC

SFR-22 Req.SR1
Req.SEM2
Req.SR3
Req.S1

Support for manual content certificate
distribution

HTTP/IP Alpha

SFR-23 Req.SR1
Req.SEM2
Req.SR3
Req.S1

Support for automatic content certificate
distribution

HTTP/IP Alpha+

Table 8: SF Routing features

The SFR component delivers features to the media component in the form of data plane connectivity
at the level of HTTP/IP based protocols, as outlined in the relevant service function chain in Figure 8.
The delivery is expected to be organised around key interface features. The SF routing component is
responsible for realising such data plane connectivity based on the availability of SF endpoints in the
FLAME network and the current conditions of the transport network, e.g., in the form of available links
being available. For this, the routing feature parses the topology information model provided by the
orchestration component to suitably configure the infrastructure component, while initially providing
shortest-path routing functionality to the protocol mapping feature. The latter realises the media
component facing IP protocol termination and mapping onto Layer 2 protocol exchanges. It utilises the
registration information realised by the registration feature, while providing the basis for in-session
switching for HTTP, realised by the diversity support feature, and for encryption support, provided by
the security feature.

Page 22 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Figure 8: Relevant SFR Service Function Chain for Alpha+ Release

For the alpha+ release accompanying this deliverable and the soon-to-come beta release, we expect
all major features of the SFR to be realized while a number of features will remain for the release
candidate at the end of the project. Most relevant from a media service perspective is the realization
of the multi-source retrieval (using network coding) as well as the network-level indirection. From an
operational viewpoint, features on PCE resilience and support for larger topologies are being deferred
to the release candidate while we foresee also new features such as 5GLAN-compliant terminal
mobility to be realized in the release candidate.

Table 9 provides a summary of the orchestration implementation technologies including the licenses,
expected enhancements, foreground and TRL starting point. All background technologies of the
orchestration are offered on permissive software licenses that allows aggregation and distribution of
foreground in accordance with the Platform Product distribution within the project and beyond to 3rd
parties wanting to evaluate the software.

Service
Function
ID

Technology
Starting
Point

License Expected enhancements Expected
foreground
ownership

TRL

SR & PCE FLIPS Access via
separate
license
agreement

Realization of features according to alpha
feature table

IDE 6

SDN
Controller

FloodLight ASLv2 Integration IDE 6

Table 9: SFR implementation technology summary

3.1.1.4 Cross Layer Management and Control

The CLMC component supports the monitoring, measurement and assessment of media service and
platform performance, in addition to configuration of processes supporting the integration and
organisation of data for analytics.

The features of the CLMC are defined in Table 10. These features are organised in accordance with the
interfaces towards other system components including:

Page 23 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

 Media Service Configuration: Used to monitor changes in media service configuration including
the lifecycle of a media service instance, media components and service functions

 Monitoring: Used to monitor the state and performance of media services including all
configured items (media service instance, media components and service functions) and the
performance of underlying infrastructure resources allocated to them

 Analytics: Used to integrate and aggregate higher-level facts about media service KPIs and
dimensions

 Query: Used to query, filter and visualise media service and platform information

 Performance Configuration and Notification: Used to specify and monitor specific KPI
performance metrics of interest

 Security: Used to control access to information to those that are authorised to do so.

Feature
ID

Req Feature Description Component
Interface

Release

Media Service Configuration

CLMC-1 Req-C1 Define media service information model Config Alpha

CLMC-2 Req-C1 Define configuration information model
including failure taxonomy

Config Alpha

CLMC-3 Req-C1 Store configuration data Config Alpha

CLMC-4 Req-C1 Monitor media service lifecycle config
events

Config Alpha

CLMC-5 Req.C6 Monitor SF lifecycle config events
(including geolocation) for SRs, hosts and
service function instances

Config Alpha

CLMC-6 Req.C2 Flexible configuration of dimensional data
abstractions

Config RC

Monitoring

CLMC-7 Req-C1 Define monitoring information model Monitoring Alpha

CLMC-8 Req-C1 Monitoring data acquisition for media
component, service function endpoint and
service function routing

Monitoring Alpha

CLMC-9 Req-C1 Store monitoring data Monitoring Alpha

CLMC-10 Req-C1 Delete monitoring data Monitoring Alpha

Analytics

CLMC-11 Req.C2 Basic monitoring data aggregation
functions

Analytics Alpha

CLMC-12 Req.C2 Dimensional data abstraction across (time,
space, content representation, content
navigation, resource configuration, etc.).

Analytics Beta

CLMC-13 Req-C2 Define data quality model for accuracy,
completeness, timeliness and consistency

Analytics Beta

CLMC-14 Req.C2 Generation of new media service templates
with human in the loop

Analytics Beta

CLMC-15 Req.C2 Generation of new media service templates
through machine learning

Analytics RC

Query

CLMC-16 Req.C2 Query monitoring data Query Alpha

Page 24 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Feature
ID

Req Feature Description Component
Interface

Release

CLMC-17 Req.C2 Visualise monitoring data Query Alpha

CLMC-18 Req.C2 Query by KPIs and dimensions Query Beta

Performance Configuration and Notify

CLMC-19 Req.C2 Specification of KPIs for measured facts KPI Alpha

CLMC-20 Req.C2 Monitor KPI events based on measured
facts

KPI Alpha

CLMC-21 Req.C2 Monitor KPI events based on aggregated
facts

KPI Alpha

CLMC-22 Req.C7 Publish and subscribe to KPI events KPI Alpha

Security

CLMC-29 Req.C7 Restrict access to stakeholder viewpoints
on monitoring data

Security Beta

Table 10: CLMC features

The CLMC implementation depends on the specification for a media service. According to the D3.3
architecture:

“[Media Service] Specification of the descriptors required for the definition, deployment and
management of Media Services, including dynamic behaviours that can be explored within
experimentation, testing and operations. Specification-Language-compliant Templates will be
available for the Media Service Providers to make the definition of Media Service easier. The
Specification Language will take into account current orchestration specs for cloud
environments, such as TOSCA.”

The media specification provides the logical configuration structure for a media service. This structure
defines context for monitoring information acquired when the media service is operated. The structure
offers key relationships between information whilst the logical naming of service functions will allow
for monitoring data to be integrated through the use of correct references. The overall naming scheme
for items within the media service specification is a critical input for different aspects of the CLMC
information model.

The CLMC delivers features to all other Platform components. The delivery is expected to be organised
around key interface features. The orchestrator and SF Endpoint Management and Control
components are responsible for changing resourcing configurations in response to media service
provisioning events and media service demand. These events need to be captured by the CLMC to
track the changes in service configuration over time. For the alpha release the event logs will be limited
to key media service and SF lifecycle events. A protocol for reporting configuration events including
the message format with pub/sub service implementation is needed. With the configuration in place,
the CLMC has the context for monitoring information produced by different system components. The
infrastructure, platform and media services are Monitoring Producers that depend on the availability
of a pub/sub monitoring pipeline that offers a protocol and a messaging format for monitoring data.
Although these two feature streams are related they can be implemented in parallel if the information
model is agreed and information exchange is achieved through pub/sub protocols.

The SFC for the CLMC is shown in Figure 9. The SFC is designed to allow SFs instances to be distributed
in the same way as we expect for media services. During the development it is possible to deploy SFCs
3-8 within a single VM. However, for production, we’d expect these to be distributed across different
VMs depending on scale and performance needs.

Page 25 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Figure 9: CLMC Service Function Chain

The CLMC service function chain will be implemented through adaptation and enhancement of an
existing open source software that has been developed for the purpose of service monitoring. The key
for the alpha phase is to put in place the technologies supporting the acquisition of the data. Higher
level analytics can then be implemented in later releases to help improve the way media services are
managed. Table 11 provides a summary of the CLMC implementation technologies including the
licenses, expected enhancements, foreground and TRL starting point. All background technologies of
the CLMC are offered on permissive software licenses that allows aggregation and distribution of
foreground in accordance with the Platform Product distribution within the project and beyond to 3rd
parties wanting to evaluate the software.

Service
Function
ID

Technology
Starting Point

License Expected enhancements for CLMC
Service

Expected
foreground
ownership

TRL

CLMC-
SF1

Telegraf MIT Integration of measurement points
from specific media services

Atos 6

CLMC-
SF2

FLIPS or Telegraf Commercial
and MIT

Integration of measurement points
from platform services

IDE and
ITINNOV

6

CLMC-
SF3

Influx DB MIT Configuration of transactional time
series data model; Configuration of
time series data aggregation
functions.

ITINNOV 6

CLMC-
SF4

Kapacitor MIT TOSCA Alert Specification integrated
to stream-processing engine

ITINNOV 6

CLMC-
SF5

InfluxDB MIT Information model for platform
supporting context for
measurement data

ITINNOV 6

CLMC-
SF6

InfluxDB MIT Configuration of data source
abstraction functions using temporal
analysis of data points

ITINNOV 6

CLMC-
SF7

Neo4J GPL v3 Dynamic graph building derived
from system topologies, and graph

ITINNOV 6

Page 26 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Service
Function
ID

Technology
Starting Point

License Expected enhancements for CLMC
Service

Expected
foreground
ownership

TRL

analytics supporting understanding
of system level behaviours

CLMC-
SF8

Either SQL DB or
Graph DB

TBD A repository for storage of
configuration templates and system
response datasets that can be
browsed and queried

ITINNOV 6

Table 11: CLMC implementation technology summary

3.1.2 Summary of Platform Releases

Table 12 provides a summary of component features across each platform release. As we can see from
this overview, although positioned as two intermediary releases, most features are provided for the
alpha+ release in preparation for the open call and validation trials. This release is then tested in
deployment infrastructures and released with the same feature set albeit hardened through those
tests as the beta release in January 2019. It will therefore be effectively the release used by
experimenters. Any new features are pushed to the release candidate and will benefit the second wave
of experimenters in FLAME.

Component Alpha+ Features (Oct-18) Beta Features (Jan-19) RC Features (Dec-19)

Orchestration Parse FLAME-TOSCA, as
defined in T4.1, template
and check for consistency

 Support container based
media service orchestration

 Provide TOSCA template to
FLAME platform
orchestrator

 Full consistency check of
FLAME-TOSCA template,
including consolidating
deployment state with
orchestration request

 Provide SF endpoint control
policies in TOSCA template
extensions towards SFEMC
component

 Provide SF endpoint state
information in TOSCA
template extensions
towards SFEMC component

Service
Endpoint
Management
and Control

 Parse surrogate policy
based on FLAME-TOSCA
template extension

 Parse surrogate policy
based on TOSCA template
extension

 Allow for delegated name
registration for SF
endpoint images

Page 27 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Component Alpha+ Features (Oct-18) Beta Features (Jan-19) RC Features (Dec-19)

 Query monitoring data

 Decision logic matching
monitoring data against
policy constraints

 Initialise and maintain SF
endpoint state

 Maintain SF endpoint
compute/storage images

Service
Routing

 Monitor service function
routing

 Implement HTTP level
protocol mappings
according to IDE
specifications for HTTP-
over-ICN

 Implement IP level protocol
mappings according to IDE
specifications for IP-over-
ICN

 Support for shortest path
routing

 Parse topology information
model

 FQDN registration based on
configuration

 FQDN registration based on
registration distribution
protocol

 Support for link failure
through path updates

 Support HTTP in-session
switching

 Support UE-level inter-SR
mobility

 Support for HTTPS & TLS

 Support for manual content
certificate distribution

 Managed DHCP-based IP
address assignment

 Support for automatic
content certificate
distribution

 Implement IP multicast
protocol mappings
according to IDE
specifications for IP-over-
ICN

 Support for geo
constrained routing

 Support for policy routing

 Support for topologies
larger than 256 links

 Support for traffic classes
based on protocol classes
or FQDN

 Support HTTP multi-
source retrieval

 Support HTTP net-level
indirection

 Support UE mobility in
5GLAN

 Support against PCE
failure

 Support for FQDN
authority delegation

Page 28 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Component Alpha+ Features (Oct-18) Beta Features (Jan-19) RC Features (Dec-19)

CLMC Define media service
information model

 Define configuration
information model

 Store configuration data

 Monitor media service
lifecycle config events

 Monitor SF lifecycle config
events (including
geolocation) for SRs, hosts
and service function
instances

 Define monitoring
information model

 Monitoring data acquisition
for media component,
service function endpoint
and service function
routing

 Store monitoring data

 Delete monitoring data

 Basic monitoring data
aggregation functions

 Query monitoring data

 Visualise monitoring data

 Specification of KPIs for
measured facts

 Monitor KPI events based
on measured facts

 Monitor KPI events based
on aggregated facts

 Publish and subscribe to
KPI events

 Define data subject
information model

 Define information security
model

 Query for data related to a
data subject

 Delete data related to a
data subject

 Dimensional data
abstraction across
(time, space,
content
representation,
content
navigation,
resource
configuration,
etc.)

 Define data
quality model for
accuracy,
completeness,
timeliness and
consistency

 Generation of
new media service
templates with
human in the loop

 Query by KPIs and
dimensions

 Secure
communication of
personal data

 Restricted access
to personal data

 Restrict access to
stakeholder
viewpoints on
monitoring data

 Flexible configuration of
dimensional data
abstractions

 Generation of new media
service templates
through machine learning

Table 12: Platform feature roadmap

Page 29 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

4 MEDIA SERVICE PRODUCT ROADMAP

Similar to the platform product roadmap in Section 3, this section provides an overview of the roadmap
for the foundational media services provided by the FLAME project. The updates compared to D3.5
include information for the packaging for those services and an update of the functionalities provided
by those services and their availability in the future Alpha+ and Beta releases.

4.1.1 Media Services Overview

A media service product is a software product offering content production, management and/or
distribution capabilities. Media service products are integrated, tested and packaged including a
default template specification for deployment on a FLAME platform to create media services. A media
service product is dependent on one or more media component products implementing underlying
service functions within the overall media service function chain.

A media service product is no more than a set of media components described in terms of topology,
performance and resourcing using templates. Media services themselves are not part of the FLAME
platform but are deployed and managed by it. The FLAME platform orchestrates the deployment of
media components as well as internal service functions. Throughout the project the goal is to build an
initial set of foundation media services and then extend the available media services through
developments conducted by 3rd parties.

Figure 10: Media services and media components

4.1.2 Media Service Packaging and Provisioning

The packaging of service functions is fully decoupled from the provision. As illustrated in the figure
below, the packaging of a service function is conducted outside of the FLAME platform using a bash-
based toolchain provided by the FLAME consortium. The provisioning of service functions then is
achieved through the FLAME Orchestrator which requires a TOSCA-compliant descriptor
communicating the resource configurations for each service function to the platform’s SFEMC and the
lifecycle policy which should be invoked upon receiving a specific trigger from CLMC.

Page 30 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Figure 11: Service function packaging and provisioning workflows

All FLAME clusters have the KVM and LXD hypervisor installed which allows the media service provider
to choose from the two at packaging time. The provided packaging toolchain hides the complexity of
installing and configuring the hypervisors and only demands an Ubuntu 16.04.5 64bit machine set up
outside the FLAME platform where the media service provider runs the toolchain which takes care of
creating the desired base image, configures it to FLAME’s needs and exports it as a compressed TAR
ball after the media service provider has copied their software into the virtual instance and configured
it according to their needs. Note, the supported base images for KVM and LXD are Debian derivates
and CentOS at the moment with plans to extend the range of supported Linux flavours based on the
experimenters’ feedback.

4.1.3 Media Component Products

FLAME has defined a list of media component products that offer common capabilities necessary to
construct media service products. For example, a content conditioning process will require transcoding
and trans-rating media components. The initial media components products are used to create
FLAME’s “Foundation Media Services” (FMS) providing examples of capabilities that benefit from the
FLAME platform. The foundation media components and services form part of the FLAME offering.

Due to the number and variety of the foundation media components criterion have been established
to select components to be implemented. Firstly, the prioritisation process has carefully analysed the
validation scenarios proposed in FLAME. D3.1 – FMI Vision, Use Cases and Scenarios describes the first
version of the mentioned validation scenarios [FLAME-D3.1]. The validation scenarios considered in
FLAME are:

 Participatory media for interactive radio communities (City Fame)

 Personalised media mobility in urban environments (Follow Me)

 Collaborative interactive transmedia narratives (Interactive Storytelling)

 Augmented reality location-based gaming (Gnome Trader).

Some of the foundation media services have been specifically defined to cover modules of these
validation scenarios, as described in D3.3 FLAME Platform Architecture and Infrastructure Specification

Page 31 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

V1 [FLAME-D3.3]. Secondly, the prioritisation of the media services has considered the suitability of
the media services to show the advantages of the FLAME platform benefits and technical innovations
as described in Section 2.5 of D3.3. Finally, the prioritisation process has considered the terms for the
different FLAME releases and the development requirements for each service. Additionally, a certain
foundation media service can include different implementations along the project (e.g., involving
different existing software initiatives) with the respective temporal terms.

Table 13 identifies the media components that fulfil the requirements of modules identified in the
FLAME validation scenarios. These foundation media components can be clustered according to their
functionality and the step they cover in the production and distribution chain, as detailed later. During
the component implementation activities, some media components planned in D3.5 have been
combined. Table 13 also clarifies the previous IDs and names of the respective functionalities, as stated
in the previous version of the deliverable.

FMS ID and
Name in D3.5

Description

Metadata
database

MC-1
Media content
database
MC-12
Metadata
Transmission
and
Management

This service consists in a generic database, which is a required module in
most of media services. Thus, the four FLAME validation scenarios include a
database, as shown in FLAME deliverable D3.3.

Metadata consists of data that describe the media assets.
This database keeps two different kinds of information: 1) objectives and
quality parameters of the media assets stored in the media service and 2) a
description (name, synopsis, duration) of the assets. For the second kind of
information, FLAME offers a schema by default. However, it also admits a
schema supplied by the media service provider since media producers and
distributors are used to consider their own content categories and
description formats.

Media quality
analysis

MC-2
Media Quality
Analysis

The objective of this service is the evaluation of the media characteristics of
a certain media asset. These characteristics include data such as the
resolution, the video and audio codecs and also an automatic estimation of
the quality. This last functionality may be required to determine the
suitability of contents provided by prosumers.

Content
ingest and
storage

MC-3
Content Ingest

MC-4
Content Storage

This media component enables the insertion and hosting of media assets to
make them available in a media service. Concerning content ingest, this
component will satisfy two different functionalities. On one hand, it will
enable the provision of contents to deploy an experiment. In this case, the
service is used before the experiment deployment. For instance, a media
service provider may want to test a Video-On-Demand (VoD) service using
the FLAME platform. This service would allow the provider to “upload” the
assets. On the other hand, this service will enable the ingest of content as a
part of an experiment, as in the City Fame scenario. In this case, the service
is used during the experiment itself.
Besides the ingest, this media component is in charge of storing the media
assets for the provision of the services. This kind of functionality is widely
required by media services. This is for example the case of a video on
demand service. This component satisfies the requirements of the content
provisioning module in the Follow me scenario, among others.
This FMS also works as a retrieval component, able to deliver assets.

Virtual CDN MC-10
Virtual CDN

MC-5
Content Caching
Management

This service consists in the creation of a CDN using virtual nodes to optimise
the advantages of this kind of networks, such as bitrate, low latency, load
balance and scalability. CDNs perform caching of data to enable faster
access by the end users. Moreover, CDNs approach content to end users
with high availability and high performance. Video distribution networks are

Page 32 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

typically CDNs. FLAME benefits, via Platform products, enable new ways of
implementing CDNs.
This component satisfies two different functionalities: the distribution of
content replicas across the infrastructure and the caching management.
Whereas the first functionality requires a previous design of the content
delivery, the second one is reactive and enabled when the required piece of
content is not stored in the respective node.
The mechanism specified in this service is intended to work jointly with the
metadata database and the content ingest and storage This component
satisfies the functionalities of the Caching manager module in the
Interactive Storytelling scenario.

CMS MC-6
Content
Management
System

The content management system or CMS is a widely used media component
that supports the creation and modification of digital content. These
systems usually offer a web user interface to control the existence and
availability of media assets.

Transcoding,
transrating
and content
conditioning

MC-8
Transcoding and
Transrating

MC-7
Content
Conditioning

Transcoding consists in the change of the video or audio specification to
represent the content of an asset. This kind of encoding is named source
encoding. For example, this component is in charge of converting an
AVC/H.264 video clip into a HEVC/H.265 one. The use of a more recent
specification (and this is the case of HEVC with regard to AVC) enables a
reduction of the bitrate required to represent the information while it
preserves the subjective quality.
Transrating is a similar process but in this case the encoding specification
does not change. It typically consists in an additional source encoding to
reduce the bitrate (this processing will cause a reduction of the quality, too).
Conditioning is the processing of the media assets to make them available.
For example, assets must be split in chunks and encoded at different bitrates
to offer a video-on-demand adaptive streaming service.

Adaptive
streaming

MC-9
Adaptive
Streaming

Adaptation is the process that allows a player to consider the network (and
the receiver) capabilities to automatically and instantaneously adapt the
transmitted bitrate (and the quality) in a streaming service. In this way,
adaptive streaming optimises the instantaneous quality along the asset
duration.

Adaptive data
transmission

MC-11
Adaptive Data
Transmission

This component extends the mentioned adaptive video concept to other
kinds of data transmission. For example, a certain media service could
require the transmission of 3D models to be rendered in the user equipment
or in AR applications. This component optimises the bitrate (and quality) of
the transmission of this additional data. The Gnome trader scenario requires
this kind of functionality.

Table 13: Media component products

As stated in the description of these media services and components, several of them are related. Two
main clusters can be distinguished:

 Services and components related to content management and processing (e.g., content ingest
and storage, content management system and transcoding, transrating and content
conditioning).

 Services and components related to information transmission and distribution (e.g., adaptive
streaming, virtual CDN, adaptive data transmission).

4.1.4 Releases and Media Services Product Implementation Roadmap

Table 14 summarises the roadmap for the implementation of media service products in FLAME
according to the prioritisation criteria explained in the previous subsection.

Page 33 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Component Alpha+ Beta Comments

Metadata database
Yes Yes All the validation scenarios contain a database. It can show

FLAME benefits. This implementation in FLAME will be based on
mongoDB.

Media quality analysis No Yes This service is planned for the beta release.

Content ingest and
storage

Yes Yes A first version of this component is included in the alpha release.
It will be improved for the beta release.

Virtual CDN No Yes Virtual CDN. FLAME proposes an innovative implementation
based on FLIPS, one of the new technologies involved in FLAME.
The design of this implementation is planned for the medium
term. For this reason, this component will be ready for the beta
release.

CMS No Yes This service is planned for the beta release.

Transcoding,transrating
and content
conditioning

Yes Yes Different versions of this component are included and planned
for both alpha and beta releases, depending on 1) software to
perform the encoding and 2) solution conceived for live content
or video on demand. We propose two different software
initiatives: Wowza and FFMPEG. Wowza is a commercial and
consolidated product for the deployment of adaptive streaming
services, including transcoding and transrating whereas FFMPEG
is an open source initiative that provides a variety of encoding
tools. FLAME will offer the encoding formats covered by these
external tools. Particularly, for the beta release, FLAME will
include the new and efficient HEVC encoding format.

Adaptive streaming Yes Yes A first version of the adaptive streaming service is available in
the alpha release. The service will be refined for the beta
release. The alpha release is based on Wowza. The beta release
will include nginx and nginx-ts-module to enable de streaming
engine. Additionally, different tools may be integrated in the
beta release, according to the evolution of available streaming
initiatives. This service will support different adaptive streaming
technologies and particularly MPEG-DASH and HLS.

Adaptive data
transmission

No Yes This service is planned for the beta release.

 Table 14: Media services release plan

Page 34 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

5 INTEGRATION PRODUCTS

As outlined in Section 2.2, FLAME provides several integration products, which we will detail in the
following sections. Specifically, those products cover, as updates to D3.5, the range from a localized
sandbucket environment over a staging sandpit environment to the replication infrastructures in
Bristol and Barcelona.

5.1 SANDBUCKET ENVIRONMENT

FLAME-in-a-Box is a VirtualBox-base mini-FLAME platform which allows for testing

1. SFC orchestration templates

2. SF provisioning

3. Basic communication tests of deployed SFEs

All instances that come as a single OVA and can run on a normal laptop 4 cores and 8GB of RAM.

FLAME-in-a-Box is composed of the following nodes:

 ue: A client (service initializer) for all deployed SFEs and the platform

 vbox-cluster: The cluster into which SFEs are getting deployed

 vbox-sr-ue: The service router for the ue and vbox-cluster

 vbox-pce-sfemc: The path computation and service function management and control
instance

 floodlight: The SDN controller for FLAME-in-a-Box

 vbox-sr-ps: The service router acting as the GW for all other IP endpoints in the
platform

 vbox-ps: The platform service instance which hosts the DHCP server, DNS. IP GW and
the SF repository

The resulting logical topology is illustrated in the figure below, which shows the UE and the vbox-
cluster nodes connected to the vbox-sr-ue and the vbox-ps and vbox-pce-sfemc to vbox-sr-ps. The
underlying SDN-enabled switching fabric with the innovative SFR is illustrated with blue lines.

Page 35 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Figure 12: Logical topology of the FLAME-in-the-Box environment

The vbox-cluster node is configured to 4 cores (allowed CPU utilisation of 50%), 4096MB RAM and
15GB disk. As SFEMC, reserves 1 core, 1GB RAM and 1.5 GB of free disk for the cluster system only the
remaining cloud resources are available to any deployed SFE.

5.2 SANDPIT ENVIRONMENT

The purpose of the Sandpit Environment is to support integration testing, functional testing and limited
load testing of the Platform Product and Media Service Products. The infrastructure is designed to test
product features within an infrastructure that replicates key aspects of the FLAME replication
environments in Bristol and Barcelona. The infrastructure only clones part of the replication
infrastructure due to cost constraints. However, by using a software-based infrastructure it can be
flexibly configured to support different test cases representative of those expected in real-life trials.

Figure 13 shows the target logical topology of the Sandpit Environment data plane. The design is based
on supporting a hierarchical topology of edge and metro data centres with different capacity
constraints. Each SR represents a connection to a cluster and user equipment via an access network.
Service Routers offer connectivity to media services deployed in clusters and allow User Equipment
representing one or more end user devices to access the network and place load on the system.

This configuration offers a practical baseline for testing scenarios. The use of four switches allows
different SF routes to be explored including cases of routing loops. The heterogeneity in DC and Edge
resources allows SF endpoint management policies to be explored under different resourcing
constraints. The distribution of User Equipment allows for demand to be generated from different
parts of the network.

Page 36 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Figure 13: A logical topology of the Sandpit Environment data plane

The configuration is not fixed and different setups may be established for specific test cases or when
resources need to be shared. For example, the media service resources may be aggregated to create
a larger data centre or it in some situations may be more optimal to allocate resources to specific
integration tests rather than offer the entire set up for each test.

Figure 14: Sandpit stack

The Sandpit stack is shown in Figure 14. The physical infrastructure is a single machine with 72 cores
and 8TB of disk. At the lowest level OpenStack and Floodlight are deployed to provide management of
virtual compute and the SDN fabric. OpenStack controller services and compute nodes are deployed
within LXD/LXC containers. This allows the topology of the compute infrastructure and the capacity
constraints of each compute to be flexibly configure. There is no physical SDN fabric beyond the
switches deployed as part of the FLAME platform itself. As such the SDN Controller is deployed as an
OpenStack VM and made available exclusively to the FLAME platform tenant for registration of
switches that are part of each FLAME service router. The Platform services are then deployed as a stack

Page 37 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

of VMs within an OpenStack tenancy. This includes all of the SFs required for FLIPS, Orchestrator and
CLMC components as defined in 2.2 Even though the integration infrastructure is small scale and will
not be implementing load balancing and clustering it is important to provide a reasonable mirroring of
separation between components. To achieve this the infrastructure controllers and platform
controllers are separated whilst the CLMC is also isolated considering the requirements for low
contention on storage I/O. The FLAME platform is deployed using Heat orchestration according to a
Sandpit infrastructure slice specification. The deployment uses ARDENT providing a consistent
approach to deployment as used in all replication sites. A frontend node is deployed as an OpenStack
VM to provide an http gateway to all platform services.

Figure 15: Sandpit deployment

The sandpit deployment for the scenario described in Figure 12 is shown in Figure 15. The figure shows
a series of networks for control and data planes required by the FLAME platform. Access to the sand
put is via “ext_net” using SSH. By using an SSH tunnels, clients such as web browsers can connected to
the platform services, to emulated user equipment and to service function endpoints themselves.

Table 15 shows a capacity plan for the sandpit considering the logical topology (Figure 13), the services
required for the management and control plane, and continuous integration services including load
test drivers. Overall the total capacity required for the sandpit is:

Page 38 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

 number of VMs/Containers = 65

 number of CPUs = 68

 RAM = 148 GBytes

 storage = 5 TBytes

These values consider a standard media service size that can be used as the basis for functional testing
of the Platform. The capacity plan does not consider how to support the requirements for all media
services as these requirements have a high degree of variation and often require significant capacity
beyond what can be provided in integration. Media services with service function chains requiring
significant resources can only be tested at replication sites where such capacity exists.

VMTypes #elements
(VMs)

#CPUs
per
VM

Total
CPUs

RAM Storage Storage
Type

Server Workload assumptions

Integration
Services

Continuous
Integration

1 2 2 2 1000

 Intermittent load based on
build frequency, storage of
build artefacts and test data

Infrastructure
Product

OpenStack
Services

24 0.5 12 24 1000 Baseline estimate

Floodlight 1 1 1 8 100 Baseline estimate

Platform
Product

FLIPS PCE 1 1 1 1 20 Baseline estimate

FLIPS SR 4 1 4 4 80 Baseline estimate

FLIPS MOOSE 1 1 1 1 100 Baseline estimate

Orchestrator
OSM

1 8 8 16 100 Disk

CLMC Graph
Database

1 4 4 32 500 Disk Buffer Mem =
write_throughput *
buffer_seconds
Storage = write_throughput *
log_retention_hours
Separate drive to avoid disk IO
contention with other services

CLMC Time
Series DB

1 4 4 24 1000 SSD,
IOPS
500

 Assuming a single node
Low = 5K writes a second, 5
queries a sec, 100K unique
series
Med = 250K, 25K, 1M
Low Compute
CPU: 2-4 cores
RAM: 2-4 GB
IOPS: 500
Storage Size
Non-string values require
approximately three bytes.
String values require variable

Page 39 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

VMTypes #elements
(VMs)

#CPUs
per
VM

Total
CPUs

RAM Storage Storage
Type

Server Workload assumptions

space as determined by string
compression.

CLMC Service
and Dashboard

1 1 1 2 1 Disk

Media Service
Products

Media Service
Functions

24 1 24 24 600 Disk Depends on scenarios

User
Equipment

4 1 4 8 200 Disk Depends on the test
scenarios, could be co-located
with the CI server will most
likely be idle when the tests
are running unless we run
parallel build and integration
tests

Totals 65 0 68 148 4801

Table 15: Sandpit infrastructure capacity planning

The final allocation of VMs to servers is a trade-off between performance, isolation and cost.
Consolidating VMs on fewer servers will reduce the cost of the integration infrastructure. However,
this will result in poorer performance and more contention between the components during tests
increase difficulty and time to resolve defects on test failure.

5.3 INFRASTRUCTURE ENVIRONMENT

The following two sub-section will provide insights into the staging and production environments we
have established in the two replications located in Bristol and Barcelona. Specifically for the Bristol
environment, the update compared to D3.5 includes the move from the Bristol-is-Open environment
to the University of Bristol environment at Millennium Square, while the Barcelona infrastructure is
updated to capture the insights from the first replication phase.

5.3.1 Bristol Infrastructure

5.3.1.1 Bristol Staging Infrastructure Specification

The purpose of the infrastructures is to support the acceptance testing of Platform Product and Media
Service Products on the UoB 5GUK Test Network Infrastructure Product.

Page 40 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Figure 16: Bristol logical infrastructure configuration

The overall FLAME platform has been deployed at Millennium Square Bristol City Centre on top of
5GUK Test Network. Four compute nodes (one per tower) are deployed at the square.

Resource Capacity Availability Constraints

Compute 4 x OpenStack Compute Node with
15 core available. See Figure 16.

These resources are dedicated to
FLAME.

Storage 4 storage nodes with 900GB These resources are dedicated to
FLAME.

Networking 4x EdgeCore SDN switches
4 x Ruckus WiFi access points

These resources are shared across
projects.

Table 16: Bristol infrastructure resource specification

Page 41 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Figure 17: Bristol compute/storage/network node specification

5.3.1.2 Bristol Production Infrastructure Specification (UOB)

The purpose of the production infrastructures is to support real-life trials and experiments to explore
the acceptance, viability and performance of FLAME products in Bristol. The diagram in Figure 18 is a
current snapshot showing the locations with mobile edge computing in the four towers and the Ruckus
WiFi technology, mirroring the staging environment presented above albeit located in the actual
physical deployment location of the Millennium Square in Bristol.

Figure 18: Bristol production infrastructure configuration

Page 42 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

5.3.2 Barcelona Infrastructure (i2CAT)

Barcelona Production Infrastructure Specification

The purpose of the infrastructures is to support real-life trials and experiments to explore the
acceptance, viability and performance of FLAME products in Barcelona. There exists no separate
staging environment with deployment taking place directly into the production environment.

Figure 19: Barcelona production infrastructure configuration

As shown in Figure 19, the lamp posts are connected over a wireless backhaul, forming the
experimenter’s data plane connection between the far edge (RAN) and any other element deployed in
FLAME. Also, each lamp post has a dedicated fibre connection which is used to hook them up to a
dedicated SR hosted in the edge cabinet. This way we emulate each lamp post having a dedicated SR.

Resource Capacity

Compute Cloud: i2CAT cloud resources subject to the experiment requirements and cloud resource
availability. At minimum two medium size servers.
Core DC: 2 servers containing 2 x CPUs (6 cores @ 2.4 GHz and 6 cores @ 3.5 GHz) with
Hyperthreading enabled, offering a total of 24 vCores, and 2 x 96 GB (total of 192 GB) RAM
memory.
Edge (cabinet): a server containing 1 CPU (12 cores @ 2.10 GHz) with Hyperthreading enabled,
offering a total of 24 vCores, and 128 GB RAM memory.

Storage Core: Each server provides 1.9 TB of disk space (SSD) (total of 3.8 TB).
Edge (cabinet): It provides 1.8 TB of disk space (SSD).

Networking Cloud: 3xPronto TN3290 switches; 10 Gbps wired connectivity
Edge (cabinet): 10 Gbps wired connectivity

On-street equipment:
4 WLAN devices installed in lamp posts

Deployment diagram of the physical hardware

Page 43 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

 Access and Multi-hop backhaul network: IEEE 802.11ac

 10 Gbps wired connectivity to the cabinet

 1 Gbps wired connectivity between lamp posts and edge cabinet

Table 17: Barcelona production infrastructure resource specification

The production infrastructure will be deployed in Barcelona during the first stage of the project as a
replication of Bristol FLAME infrastructure. Plans to extend the hardware infrastructure in Barcelona
is left beyond the scope of the project.

Page 44 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

6 CONCLUSIONS

This report has described the updated technical roadmap for the FLAME project. The report describes
a set of interdependent software products that together will provide a ground-breaking media service
delivery platform exploiting the benefits of highly-distributed software-defined infrastructures.

The Platform product has been elaborated in detail as one key output of the project. A feature analysis
is described for the FLAME platform covering Orchestrator, SF Endpoint Management and Control, SF
Routing and Cross-Layer Management and Control. The Infrastructure Products are described to
provide the target deployment environment for products. The media service product roadmap is also
included, identifying the foundation services that will form part of the FLAME offering. The relationship
with experimentation and project KPIs is elaborated to explicitly show how features of the Platform
address the key objectives of experimentation independent of physical location and reducing the time
to perform experiments.

A systems integration and testing plan is defined detailing the DevOps processes including multi-
project structure, development workflows, and testing tools. A software-based integration
infrastructure is specified that offers the ability to conduct integration tests that cover the expected
features of the platform, which are in turn representative of the production infrastructure. This
integration infrastructure allows for concurrent integration tests if needed for the different integration
activities expected within the project.

Page 45 of 45

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

REFERENCES

[ETSINFV] ETSI GS NFV-SOL 004 Network Functions Virtualisation (NFV) Release 2; Protocols and Data
Models; VNF Package specification, available at
http://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/004/02.03.01_60/gs_nfv-
sol004v020301p.pdf

[FLAME-D3.1] D3.1 FMI Vision Use Cases and Scenarios v1.0, available at
https://www.ict-flame.eu/download/d3-1-fmi-vision-use-cases-and-scenarios-v1-0/

[FLAME-D3.2] D3.2 Experimental Methodology for Urban-Scale Media Trials v1.0, available at
https://www.ict-flame.eu/download/d3-2-experimental-methodology-for-urban-scale-media-trials-
v1-0/

[FLAME-D3.3] D3.3 FLAME Platform Architecture and Infrastructure Specification v1.0, available at
https://www.ict-flame.eu/download/d3-3-flame-platform-architecture-infrastructure-specification-
v1-0/

[MANO] Open Source Mano, available at
http://www.etsi.org/technologies-clusters/technologies/nfv/open-source-mano

http://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/004/02.03.01_60/gs_nfv-sol004v020301p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/004/02.03.01_60/gs_nfv-sol004v020301p.pdf
https://www.ict-flame.eu/download/d3-1-fmi-vision-use-cases-and-scenarios-v1-0/
https://www.ict-flame.eu/download/d3-2-experimental-methodology-for-urban-scale-media-trials-v1-0/
https://www.ict-flame.eu/download/d3-2-experimental-methodology-for-urban-scale-media-trials-v1-0/
https://www.ict-flame.eu/download/d3-3-flame-platform-architecture-infrastructure-specification-v1-0/
https://www.ict-flame.eu/download/d3-3-flame-platform-architecture-infrastructure-specification-v1-0/
http://www.etsi.org/technologies-clusters/technologies/nfv/open-source-mano

