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EXECUTIVE SUMMARY 

This deliverable D3.10 provides a second version of the specifications for the FLAME platform and 
infrastructure, building upon the original blueprint provided in [D3.3] and the experiences and 
revisions realized in the ongoing development of platform components and deployment at 5G 
infrastructures in Bristol and Barcelona.  

The main outcome of these revisions is a set of revised specifications. Those provide insights into the 
main FLAME platform components, their relation to media service components provided by media 
service providers on top of the FLAME platform, and the interaction with the infrastructure provided 
by stakeholders such as Bristol or Barcelona city council.  

The methodology driving the revised specification work focusses on the main changes to the platform 
architecture with aspects of component-level design, revised inter-component interfaces, intra-
component design and infrastructure integration. 
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1 INTRODUCTION 

This deliverable D3.10 provides a revision or update to the FLAME architecture specification initially 
provided in [D3.3]. Given the time of developing this specification within the project lifecycle, this 
revised specification captures the insights obtained from developing and deploying the FLAME 
platform in real infrastructures and performing initial functional tests on those infrastructures. This 
understanding will be further developed through experiments and user-centric trials to be conducted 
from 2019-2020. This deliverable focuses on the architecture, its components interactions as well as 
the sub-components as being developed in the current prototype. Aspects of the business 
architecture, the relationships of stakeholders as well as use cases and their derived requirements 
remain unchanged. We therefore refer the reader to [D3.3] for this information.  

With this in mind, we start with our revision to the high-level architecture in Section 2, followed by the 
main relationships in the overall system, and the various scopes of orchestrations that exist in our 
system. Section 3 then provides an update of the component-level interfaces, while Section 4 presents 
an overview of the sub-components as new information compared to D3.3. In Section 5, we follow on 
the service function chains, as introduced in D3.3, for major interactions with and within the FLAME 
platform, while providing our approach to infrastructure integration in Section 6.  

The specifications in this deliverable are considered very stable and form the basis for the beta release 
of the FLAME platform in its overall integration lifecycle, as will be detailed in D3.7. This beta release 
will form the basis for our validation as well as experiments and trials in 2019-2020. Nonetheless, we 
have planned another update for the release candidate of the FLAME platform towards the end of the 
project with final revisions based on insights from our experiments.  
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2 PLATFORM ARCHITECTURE 

This section provides a component-level overview as an introduction for the component-level 
interfaces and sub-components presented in Section 3 and 4, respectively. It also outlines the 
relationships in the overall platform and the scopes of orchestration of resources and services that 
exist in the overall system.  

2.1 COMPONENT-LEVEL OVERVIEW  

Figure 1 shows the FLAME platform architecture, operating on top of an infrastructure such as the one 
provided in our deployments in Bristol and Barcelona. In this figure, we focus on the main layers of the 
overall architecture, including the FLAME platform, while showing main sub-components for 
explanation of the overall workings. Detailed descriptions on the internal functions of the various 
layers are deferred here to Section 4. 

At the very bottom, we assume the existence of the infrastructure (provider), exposing an ETSI MANO 
compliant interface [NFV] to the FLAME platform for resource management at the wholesale level, i.e. 
the FLAME platform is reserving platform resources in the compute, storage and networking domain. 
We assume such infrastructure resource exposure provides the ability to reserve resources for the 
FLAME platform as part of a longer-lived relationship between FLAME platform provider and 
infrastructure provider, realized with an infrastructure slice. At the current level of our infrastructure 
integration (see Section 6), we provide support for OpenStack [Openstack] and OpenFlow [OpenFlow] 
managed compute, storage and communication resources.  

 

 

Figure 1: FLAME Platform Architecture  

Resources of the infrastructure provided to the FLAME platform are in turn provided as retail resources 
to the media services at the top of the platform through management interfaces exposed to media 
services. In other words, the FLAME platform orchestrates the deployment of media components as 
well as internal service functions. In addition, a monitoring interface allows for information exchange 
between media services and FLAME platform, which in turn will drive the decisions taken for the 
management input via the former interface. This combination of management and monitoring 
interfaces effectively provide the experiment API towards media services, allowing for defining and 
placing the compute, storage and network resources for the specific tests in the experiment, along 
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with monitoring and alert configuration necessary to trigger service function policy actions and 
understand performance in relation to resource specifications. The experiment API is complemented 
at the data plane through standard HTTP/IP data plane interfaces of the existing Internet through 
which media services realize their functionality.  

The management interfaces allow for initiating the orchestration of (retail) resources by a media 
service provider. We see these interfaces and therefore the dialogue between media services and the 
FLAME platform evolving over time. In an initial realization, we see media services heavily relying on 
the ETSI MANO compliant interface, providing details on compute, storage and network resources 
being utilized in their specific experiment deployment. However, empirical insights obtained from the 
initial experiments will drive the evolution of the FLAME-specific (second) management interface 
towards one that provides a selection of orchestration templates for specific use cases. Such templates 
will therefore remove the need for explicitly defining each orchestration template from scratch, while 
utilizing the ETSI MANO compliant interface to utilize this evolving template knowledge towards the 
FLAME platform. This evolution is based on the evolving knowledge through our initial use cases on 
how to best accommodate demand and supply for specific media services. Through our open calls, this 
richness of knowledge is meant to expand, e.g., through rich control policies that allows for matching 
runtime-level demand and supply measurements and feeding them into the control elements of the 
FLAME platform. Again, instead of needing the media service provider to define all those details 
through own templates and setups, we see an enriched repository of configurations that is being 
utilized by the FLAME-specific management interface between media services and FLAME platform 
rather than utilizing the ETSI MANO compliant variant. Ultimately, we see the relationship between 
media services and platform as being realized by high-level KPI-driven service-level agreements (SLAs), 
expressed through the FLAME-specific management interface and realized through an evolving CLMC 
on the platform side.  

As indicated in Figure 1, we consider the realization of the media services outside the scope of the 
FLAME platform itself. We do assume, however, that a media service is realized through a set of media 
components, each communicating with each other through an HTTP/IP-compliant data plane 
interface. Media services will utilize the management and monitoring interfaces to the FLAME platform 
(see below) to facilitate and enable the deployment of those media components through the FLAME 
platform, i.e. media components are (computing and storage) resources from a FLAME platform 
perspective. Towards the end user, we see media components utilizing service-specific interfaces and 
interaction methods. Media components are implemented utilizing platform resources, such as 
servers, connectivity components (e.g., switches) and others, while also utilizing resources outside of 
the scope of FLAME, such as end user devices and Internet-of-thing components. With that in mind, 
we position FLAME as a distributed programmable resource platform, which can be used by media 
services for the fulfilment of a desired experience towards users. It is up to the policy of the FLAME 
platform provider if resources are provided exclusively to a media service provider or from a shared 
resource pool. In the latter case, experiments conducted by the media service providers could run 
concurrently in the system, while the former case provides an exclusive access to the resources for a 
single media service provider. The governance and specificity of the experiments as well as deployment 
will likely drive these policies. For instance, exclusive usage of geographically defined resources might 
make certain media service deployments mutually exclusive since appropriate resources for another 
deployment are simply not available.  

In addition to media services, we position the FLAME platform as supporting the realization of 5G 
control plane services, such as the Session Management Function (SMF), for vertical control planes as 
envisioned for, e.g., vehicular or industrial scenarios. The applicability of the FLAME platform for this 
set of use cases has been successfully demonstrated in joint demonstrations with Deutsche Telekom 
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and is enabled through the alignment of the FLAME platform design with the evolving enhanced 
Service-based Architecture (eSBA) specifications in 3GPP Release 16. 

The orchestrator component of the FLAME platform interfaces with the infrastructure resource 
management, through the aforementioned ETSI MANO compliant interface. The orchestrator manages 
the compute/storage/network resources at the retail level, i.e. towards the media service provider, 
while it utilizes the surrogate policy control interface towards the Service Function (SF) endpoint 
management and control component to realize the orchestration-level management policies as well 
as to set suitable shorter-term control policies for (surrogate) service function endpoints. For the 
realization of the configured service function endpoint policies, the service function endpoint 
management and control layer utilizes the FQDN registration interface to control the registration and 
deregistration of the service endpoints towards the service function routing component. With this, 
the ‘visibility’ of said FQDN towards service requests being routed can be controlled. The service 
routing layer, in turn, will use the OpenFlow interface (e.g., via suitable platforms such as ODL [ODL]) 
to suitably configure the switching fabric of the underlying infrastructure. 

Particular consideration is given in our platform to the gathering of information across various layers, 
realized by the Cross-Layer Management and Control (CLMC) component. While such data is useful 
and needed for control-level decisions, such as the activation of service endpoints, it also provides a 
rich pool of data for media service providers to develop insights into resource specifications, adjusting 
crucial longer-term strategies such as those for content placement or media adaptation, and 
dimensioning SLAs expected to govern B2B and B2C relationships. The CLMC brings together time-
series and graph analytics to understand demand, resourcing and performance properties of media 
service function chains deployed within the FLAME platform. Time-series measurements related to 
individual service functions and links are aggregated and then related through hierarchical topologies 
of infrastructure, service function endpoints and overall service function chain. For a given 
orchestration, the infrastructure and service function nodes remain largely static whilst the 
deployment and state of surrogates varies throughout the lifecycle of the service function chain 
according to demand and policies. The CLMC can continuously produce temporal graphs that integrate 
state, performance and resource usage of system elements that can deliver insights such as end-to-
end delay for protocols at OSI L6 such as HTTP. The time-series measurements are acquired from 
existing monitoring frameworks provided by the individual sub-systems (such as those provided 
directly by switching platforms, obtained through the aforementioned OpenFlow interface towards 
the underlying infrastructure) or monitoring frameworks offered by media components themselves.  
The aim is not to replace existing systems but provide a cross-layer knowledge model that can drive 
QoS-orientated of both content and service configuration.  

In Section 3, we elaborate in more detail on the component-level interfaces outlined in Figure 1, 
including to present an UML-based version. Before that, we introduce the service abstraction being 
used for the platform-internal interactions as well as discuss the management and control aspects 
relevant to the FLAME platform. 

2.2 SERVICE ABSTRACTION AND RELATIONSHIPS 

This section discusses the main relationships of actors in the overall system, focussing on the service 
providers, platform operator and infrastructure provider. Figure 2 captures those relationships. The 
business logic of a given media service is captured in a (orchestration) template that captures the chain 
of services being used within said overall media service. One or more of such templates are then 
orchestrated by the FLAME Platform’s orchestrator into one or more deployed Service Function Chains 
(SFCs), which in turn captures the interaction of the one or more Service Functions (SFs) that represent 
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a specific service in the overall chain, such as a CDN or transcoding service. The interaction of services 
functions within a service function chain is facilitated by the FLAME platform’s service function routing 
capability. The one-to-one relationship illustrates the joint usage of user plane resources, e.g., switch 
buffers, bandwidth, etc, across all deployed service function chains within a single deployment of the 
overall FLAME platform.  

A service function can be realized by one or more Service Function Endpoints (SFEs), which in turn is 
realized through a virtualized resource, such as a container or virtual machine, whose capabilities are 
being specified in the orchestration template. The SFE is instantiated using a packaged image, which is 
controlled by the FLAME platform’s SFEMC component (see Figure 1 and Section 4.1.2) and executed 
on a physical instance of the underlying infrastructure, which in turn hosts one or more such physical 
instances a part of the overall deployment in a specific site. If more than one infrastructure is being 
used across, e.g., two different sites, each exposing their set of physical instances to the FLAME 
platform, an infrastructure exchange can be used for exposing a single resource pool to the 
orchestrator of the FLAME platform.   

 

Figure 2: Main Relationships 

2.3 SCOPES OF ORCHESTRATION 

Orchestrating an overall deployment of a media service in FLAME involves various level of 
orchestration, as shown in Figure 3. Over a rather longer timeframe of likely hours, days or longer, the 
infrastructure provider orchestrates the provisioning of a network slice based on a long-term 
wholesale relationship between infrastructure and platform provider.  
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Figure 3: Time Scales of Orchestration 

This slice represents the overall resource pool that the platform provider is able to utilize for deploying 
one or more instances of the FLAME platform. We envision the deployment of such platform instances 
to be a matter of minutes rather than hours or more, given the existing tenant relationship with the 
infrastructure, as manifested in the associated slice of resources. Within an orchestrated platform, 
media services are eventually the fastest (and closest to end users) level of orchestration with 
deployment times in the seconds or below timeframe by utilizing container techniques for deploying 
media services. 
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3 COMPONENT INTERFACES 

This section presents the main component interfaces of the architecture in Figure 1. We will reference 
these interfaces throughout the SFCs presented in Section 4. For this, we transform the component 
architecture in Figure 1 into an UML version, presented in Figure 4.  

 

Figure 4: FLAME Platform Architecture – UML version 

The following sub-sections outlines the interfaces of each of the components in more detail. 

3.1.1 Media Component 

A media service is comprised of one or more media components, implementing specific sub-functions 
of the overall service. Although FLAME does not prescribe the specific abstractions or methods being 
used for the decomposition nor any specific capabilities being realized in the media component, we 
do assume data plane traffic of the media component to utilize HTTP or other IP-based protocols, see 
Figure 4. In addition, we expect media components to expose an optional Analytics interface, providing 
access to media-related analytics, such as frame rates, drop rates for video content, usage statistics, 
and alike. For this, there are a number of widely accepted standard KPI definitions, while we expect an 
HTTP/REST API realization for this interface. 
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Figure 5: Media Component  

No. Interface Purpose Outcome Relevant 
Specifications 

M1 Analytics Retrieve media-related statistics and 
analytics performed by the media 
component 

Persistent set of media 
statistics and analytics 
data 

Specific to media 
components 

Table 1: Media component Interfaces 

3.1.2 Orchestrator 

Orchestration is concerned with mapping a desired resource configuration onto the resource 
constraints as defined by the availability of resources at the infrastructure level. The general 
capabilities of the interfaces are shown in Figure 6 and further elaborated in Table 2. The further 
decomposition of this component is presented in Sections 5.1.1 and 5.1.2. 

 

Figure 6: Orchestrator Component  

No. Interface Purpose Outcome Relevant 
Specifications 

O1 ETSI MANO Provide a template-level description of 
desired resource configurations for a media 
service to be deployed. Access control to 
initiate orchestration is included in this 
interface. 

Persistent set of 
service function 
endpoints and their 
topological 
relationship 

ETSI MANO 

O2 Resource catalogue Provide a template-level description of 
available resources (and their constraints) at 
the infrastructure level in which the media 
service template needs to operate. 
Furthermore, provide suitable 
infrastructure-level resource handles 
allowing for the management of the resource 
instances. 

Resource catalogue 
derived from the 
wholesale 
infrastructure (slice) 
template as well as 
infra-level resource 
handles for 
management 

ETSI MANO 

Table 2: Orchestration Interfaces 

Templates, both at the O1 and O2 interfaces, are based on ongoing specification work in ETSI MANO 
[NFVMANO]. The infrastructure provides a resource catalogue in the form of such template, referred 
to as the slice template. This template provides the constraining framework, representing the 
wholesale resources, within which the set of all media service templates need to operate. A specific 
media service template is provided at the O1 interface to the orchestration component from either 
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the CLMC component or the media component directly. Section 5.1.1 will elaborate on the different 
usage for these two types of access to the orchestration template. 

The resource catalogue, provided by the O2 interface is utilized by the CLMC component for capacity 
management, i.e., for planning the dimensioning of the various media service templates within the 
constraints set out by the slice template provided by the O2 interface. The infrastructure-level resource 
handles provided by the O2 interface are utilized by the orchestrator to initiate the suitable service 
endpoint management and control by providing such information via the SFEMC1, see below.  

3.1.3 Service Function Endpoint Management & Control 

This component is concerned with the management and control decisions pertaining to SF endpoints. 
The management decisions concern the placement and instantiation of suitable virtual instances, while 
control decisions concern the visibility of such SF endpoints in the overall service path, e.g., realizing 
use cases for alternative playout points. The general capabilities of the interfaces are shown in Figure 
7 and further elaborated in Table 3. The further decomposition of this component is presented in 
Section 5.1.2. 

 

Figure 7: Service Function Endpoint Management & Control Component 

No. Interface Purpose Outcome Relevant 
Specifications 

SFEMC1 SF endpoint 
allocation 

Provides virtual instances of SF endpoints 
based on received orchestration 
information, utilizing the received 
infrastructure-level resource handles. 

Persistent set of virtual 
instance handles to SF 
endpoints for future 
management and 
control decisions 

ETSI MANO 

SFEMC2 Surrogate policy 
control 

Provides suitable orchestration information 
for the control of SF endpoint states from 
PLACED over BOOTED to CONNECTED (see 
Section 5.1.2 for more information on these 
states) 

Persistent set of SF 
endpoint specific 
control policies being 
monitored and 
executed by the 
component 

ETSI MANO 

Table 3: Service Function Endpoint Management & Control Interfaces 

Via the SFEMC1 interface, suitable orchestration information is received based on realizations of the 
ETSI MANO specifications. The component utilizes the infrastructure-level resource handles received 
via this interface to realize the functionality of a virtual instance manager [NFVMANO], placing suitable 
SF endpoints and instantiating the necessary virtualized resources. Via the SFEMC2 interface, control 
policies are provided, derived either from existing or evolving ETSI MANO service templates, that 
define the SF endpoint specific control behaviour within the overall media service deployment. While 
current ETSI MANO compliant templates include little of such control policy, FLAME will investigate 
other control policy approaches with the final aim to integrate such policies into a coherent overall 
template description for the media service. 
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3.1.4 Service Function Routing 

The Service Function Routing component provides a number of control plane as well as a data plane 
interface for the purpose of efficiently routing service requests of any SF endpoint to one or more 
others. The general capabilities of the interfaces are shown in Figure 8 and further elaborated in Table 
4. The further decomposition of this component is presented in Section 5.1.4. 

 

Figure 8: Service Function Routing Component 

No. Interface Purpose Outcome Relevant 
Specifications 

SFR1 FQDN registration Registration of an SF endpoint with the 
service routing 

Persistent set of 
internal state 
information for 
suitably forwarding 
any request to the 
registered FQDN-
based SF endpoint 

Internal FLIPS 
specifications with the 
intention of IETF 
standardization 

SFR2 HTTP/IP Transmission of IP-based protocols at the 
HTTP or IP level 

Persistent set of 
internal path 
information suitable 
for forwarding the 
request in the network 

IETF specifications for 
HTTP and IP-based 
protocols 

Table 4: Service Function Routing Interfaces 

The data plane interface SFR2 is based on existing protocol specifications standardized by the IETF for 
protocols such as HTTP, TCP, SCTP or other IP-based protocols. This interface differentiates HTTP as a 
specific application protocol due to its proliferation in the Internet, with about 60% or more traffic 
being based on HTTP. HTTP-level SFEs, i.e. represented by a fully qualified domain name (FQDN), are 
registered through the SFR1 interface and will become ‘visible’ in the media service path as a result, 
i.e. any future service request to said FQDN will possibly be routed to the registered SF endpoint.  

For the realization of this component, FLAME has selected the FLIPS solution provided by InterDigital, 
which comes with FLIPS-specific protocol specifications (see Section 4.1.3.6 for an overview of those 
protocols).  However, the component could be realized via standard IP technologies for which existing 
DNS (for SFR1) specifications would be utilized.   

3.1.5 CLMC 

The CLMC component offers a series interfaces supporting the monitoring, measurement and analysis 
of performance, in addition to configuration of processes supporting the integration and organisation 
of data for analytics. The general capabilities of the interfaces are shown in Figure 9 and further 
elaborated in Table 5.  
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Figure 9: CLMC Component 

No. Interface Purpose Outcome Relevant Specifications 

CLMC1 Media Service 
Configuration 

Used to set a Resource Configuration for a 
Media Service including target allocations 
and constraints. 

Persistent set of 
infrastructure 
resource 
configuration change 
events 

TMF640 Activation and 
Configuration API, ETSI 
Mano VFN 
Configuration 

CLMC2 Performance 
Configuration 

Used to configure monitoring and 
measurement processes for performance 
assessment and analysis of a Media 
Service. Configuration will include setting 
up processes for multidimensional 
analysis of KPIs from monitoring data 
including aggregation, classification and 
stakeholder viewpoints.  

Performance 
monitoring and 
measurement model 
for a media service 
including runtime 
notification rules. 

TM Forum TMF-628, 
ETSI Mano 

CLMC3 Query Used to retrieve KPI measurements for a 
given set of criteria 

KPI measurement TM Forum TMF-628, 
ETSI Mano. Mainly 
proprietary options for 
the information model 
and query language 

CLMC4 Notify Used to notify subscribers of performance 
measurements through event-trigger-
action rules such as current KPI 
performance  

Notifications of 
configured 
performance events 

Many pub/sub 
specifications 

CLMC5 Analytics Used by developers of interactive media 
systems or sub-system to understand 
performance of service function chains 
through exploration or requests, 
responses and workload 

Knowledge on how to 
best achieve KPIs 
through correlated 
data, etc. 

Mainly proprietary 
options for the 
information model and 
query language 

 Monitoring    

CLMC6a Monitoring 
(infrastructure) 

Used to monitor infrastructure resources 
(compute, storage and network) including 
resource allocation, resource usage and 
resource performance metrics. Resource 
monitoring data is high frequency (uSec-
mSec) data. These data may be 
aggregated and resampled at points of 
publication to reduce the frequency and 
quantity of monitoring data through the 
network.   

Persistent set of 
transactional data 
describing the state of 
infrastructure 
resources over time 
related to a known 
context within a 
Resource 
Configuration 

Pub/sub protocol 
supporting a range of 
collection and sampling 
models 

CLMC6b Monitoring 
(Service Function 
Configuration) 

Used to monitor changes in Service 
Configuration occurring in response to 
demand  

Persistent set of 
Service Function 
configuration change 
events  

TMF640 Activation and 
Configuration API, ETSI 
Mano  VFN 
Configuration 

CLMC6c Monitoring 
(Service Function) 

Used to monitor SF including service 
request, service response and service 
performance. Service monitoring data is 
high frequency (mSec) data. These data 

Persistent set of 
transaction data 
describing the state of 
a Service Function. 

Pub/sub protocol 
supporting a range of 
collection and sampling 
models 
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may be aggregated and resampled at 
points of publication to reduce the 
frequency and quantity of monitoring data 
through the network.   

Table 5: Performance Management Interfaces 

There are different standards and specifications relevant to Performance Management. For the 
Performance Configuration, the TM Forum Performance Management API (TMF-628) [TM17] provides 
a restful API for managing the lifecycle of production and collection of performance measurements. 
ETSI Mano includes Network Service, VNF and Resources performance management operations to 
measure performance synchronously “Get Performance Measurement Results” and asynchronously 
“Notify”. Although it should be noted that the ETSI Mano specification is abstract and architectural and 
not at the level of an API with message formats. ETSI and TM Forum separate processes for measuring 
performance KPIs (Performance Management) from contractual processes provided by SLA 
Management with the former underpinning the latter. For Media Service Resource Configuration 
Monitoring, TMF640 Activation and Configuration API provides a more general version of the VFN 
Configuration operations within ETSI Mano. It is likely that the same API can be used to monitor 
configuration objects and changes associated with both infrastructure resources and service functions. 
For Resource and Service Monitoring there are no widely accepted standards but we expect to adopt 
a pub/sub protocol supporting a range of data acquisition options allowing for resampling, aggregation 
and buffering of time-series monitoring data. 

For the knowledge model, KPI Classifications have been formally defined by ITU-T, ITIL and many 
others, covering all aspects of business operations. We focus on KPIs relevant to Service Quality 
(Response Time, Throughput, Setup, Availability, etc.) and Operational Efficiency, as these are the KPIs 
most influenced by the Platform’s capabilities. A taxonomy of key KPIs will be selected and made 
available to Platform users when assessing the performance of different interactive media systems and 
their configurations. Although, from an architectural perspective the monitoring and performance 
model is generic to any service and selection of KPIs are considered a domain specific specialisation. 
For Multi-Dimensional Modelling and Queries, there are no standard approaches to multi-
dimensional analysis of data, however recent advances in graph databases and analytics is allowing for 
powerful connections and patterns between different data sets to be explored, complimenting and 
often replacing the concept of JOINS.  The CLMC utilises a combination of time-series analytics and 
graph analytics to understand the behaviour and relationships between system components across 
layers of infrastructure, platform and media services.  

3.1.6 Infrastructure  

Our view on the infrastructure is outlined in more detail in [D3.3]. From an interface point of view, we 
focus on the ability to configure forwarding capabilities and utilize the data plane of the infrastructure. 
These capabilities are outlined in Figure 10 and further elaborated in Table 6. 
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Figure 10: Infrastructure Component 

No. Interface Purpose Outcome Relevant 
Specifications 

I1 OpenFlow Provide capability to define switch-specific 
forwarding rules compliant with OpenFlow 
specifications and associated with the 
FLAME-specific infrastructure slice 

Persistent set of 
forwarding rules per 
SDN switch 

OpenFlow 

I2 Ethernet Provide data plane access at the Ethernet 
framing level 

 Relevant IEEE Ethernet 
standards 

I3 Topology Target Provide an interface to the SFR component 
to retrieve suitable data plane topology 
information to formulate the suitable 
switch-specific forwarding rules being 
provided in turn via the I1 interface. The 
exact nature of this interface depends on 
the one provided by specific SDN 
controllers and SDN platforms, such as 
OpenDayLight. 

Topology information  OpenFlow 

Table 6: Infrastructure Interfaces 

As outlined in previous sections, we assume the infrastructure resources to be provided through the 
concept of a slice. Within such slice, forwarding rules can be associated to the specific SDN-abstracted 
forwarding switches associated to the slice. The I1 interface provides such rules to the infrastructure, 
which in turn will suitably configure the switches. Such configuration is based on topology information 
provided to the SFR component via the I3 interface, where the nature of the interface will depend on 
the specific SDN controller platform being utilized. 

Any translation onto legacy components, provided through the SDN abstraction to the FLAME 
platform, is seen as being part of the infrastructure. At the data plane level, a simple Ethernet 
abstraction of the data plane is assumed at this stage. Other Layer 2 technologies can be supported by 
extending the supported framing at this interface. However, this is completely subject to the 
availability of the source code of the firmware and knowledge on the supported framing protocols. 
Commonly this is not provided by network device vendors.  
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4 SUB-COMPONENTS 

4.1.1 Orchestrator 

The sub-components of the Orchestration are depicted in Figure 11. It consists of a TOSCA Template 
Validator, a TOSCA Template Parser and an Infrastructure Resource Descriptor. 

 

Figure 11: Sub-Components of the Orchestrator 

4.1.1.1 TOSCA Template Validator  

The Validator performs a validation at syntactical and semantical level against the TOSCA NVF and 
FLAME specifications. The Validator is also the endpoint of the O1 interface and allows a media service 
provider to upload and modify a resource specification document. This document describes the SFC 
with its SFs and its lifecycle management. The upload may be performed via a HTTP/REST call using the 
POST method or uploading the resource specification file via a form on a WebGUI. The content of 
theses resource specifications has to be structured in YAML syntax. 

4.1.1.2 TOSCA Template Parser  

The Parser performs a mapping into manageable data objects and checks against the platform 
capabilities and available resources. It will only proceed, if the specified resources are available within 
the platform during runtime on all given clusters. 

4.1.1.3 Infrastructure Resource Descriptor  

The Infrastructure Resource Descriptor maintains platform information and offers this information via 
the O2 interface. Furthermore, this information is used from the Validator and Parsers to evaluate the 
resource requirements of the deployable SFs on each of the clusters of the FLAME platform. 

4.1.2 Service Function Endpoint Management & Control  

The sub-components of the Service Function Endpoint Management & Control are depicted in Figure 
14. It consists of three elements, the Service Function Control, the Virtual Instance Manager and the 
Service Function Monitor. 

TOSCA Template 
Validator

TOSCA Template 
Parser

Infrastructure 
Resource Descriptor

O1
ETSI MANO Template

O2
Resource Catalogue

Orchestration
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Figure 12: Sub-Components of the Service Function Endpoint Management and Control 

4.1.2.1 Service Function Control 

The Service Function Control is utilized to allocate resources of SFEs per cluster, based on the given 
VM/Container image, the resource specifications per SF node from the TOSCA template, as well as on 
the number of possible replications on the clusters of the FLAME platform.  

4.1.2.2 Virtual Instance Manager 

The Virtual Instance Manager maintains the lifecycle of each SFE. Based on given instructions via 
policies, the Instance Manager sets the SFEs into a targeted lifecycle state. The following state could 
be set as target per SFE: Non-Placed, Placed, Booted, and Connected. Each SFE passes certain states 
within this state machine. This is monitored by the Service Function Monitor. 

4.1.2.3 Service Function Monitor 

The Service Function Monitor keeps track of the resource consumption within the FLAME platform for 
each cluster. Furthermore, it observes the current state of each SFE. 

4.1.3 Service Function Routing 

The sub-components of the Service Function Routing component are shown in Figure 13, with a 
decomposition within a network deployment shown in Figure 14. The components are aligned with 
the emerging Service Framework of the enhanced Service-Based Architecture (eSBA) in 3GPP Release 
16 [3GPP_SBA] with the Service Router sub-component mapping onto the Message Routing of the 
service framework and the Path Computation Entity sub-component mapping onto the Network 
Resolution Function (NRF) of the service framework. With this, we ensure an alignment of the SFR 
component with future cloud-native operator environments realized via the eSBA specifications. 

 

Figure 13: Sub-Components of the Service Function Routing 

 

SF Endpoint 
Mgmt & Control

Service Function
Control

Virtual Instance 
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As can be seen in Figure 14, the SR functions are distributed at the ingress/egress to the network with 
the PCE being realized centrally together with the Authentication and Policy Enforcement sub-
components. 

 

Figure 14: Service Function Routing SF Decomposition as Network Architecture 

4.1.3.1 Service Router  

Each media component (or any other IP-based device) is connected to at least one SR at the ingress 
point to the transport network. This SR serves as an edge protocol termination point, i.e. terminating 
application sessions, transport protocol sessions or below. In the current realization of the SR, HTTP 
sessions are terminated in a proxy operation, i.e. the TCP sessions is being terminated and the HTTP 
request is being forwarded towards a suitable other SR in the network. Any other protocol but HTTP is 
terminated at the IP level, forwarding the resulting IP packets to a suitable other SR in the network. At 
said suitable other SR in the network, the HTTP or IP level packets are then forwarded to a suitable 
media component (or generally IP-based service endpoint). The Border SR shown in Figure 14 acts as 
an SR but connects to a peering autonomous system rather than a media component, for cases that 
services are being requested from outside the infrastructure domain provided by the FLAME platform. 
In other words, the Border SR is connected to a Wide Area Network (WAN) service at the IP level, which 
in turn forwards packets to the Internet. The SR performs a number of functions relating to operations 
and management, e.g., for registration of service endpoints at the fully qualified domain name (FQDN) 
level, handling of path updates, mobility support and more. With this, the SR implements the SFR2 
interface, as shown in Figure 13. 

4.1.3.2 Path Computation Element  

In order to configure the forwarding of HTTP or IP-level packets from one SR to another (see above), 
the PCE SF is being utilized. This PCE works closely with the underlying infrastructure, through suitable 
management interfaces, specifically the I1 and I3 infrastructure interfaces, to configure the forwarding 
actions of the SDN-enabled switching fabric and to obtain the topology information from the 
infrastructure to do so. For this, the PCE assigns every link of the underlying network topology to a 
unique bit in a pre-defined bitarray (with the size of the bitarray large enough to store all such unique 
bit positions, i.e. the size of the array equals the number of network links). A forwarding action from 
point A in the network to another point B can now be represented a unique bitarray in which all 
bitpositions of those links belonging to the path from A to B.  
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Figure 15 shows this simple forwarding operation. In this example, the path from S (originating in a 
peering network) to A is represented as a simple binary OR of the three links from the border GW to 
the SR to which media component A connects, i.e. 10010010 is the binary representation of this path. 
On the other hand, the path from S to B is represented as 10100010 as one link is different here 
compared to the previous. With that in mind, the transfer of a packet from S to A and B is now easily 
achieved by a binary OR of the individual path. We refer to this capability as coincidental multicast, 
which is utilized to send a single HTTP-level response to more than one client at the same time (for 
cases in which the arrival of the client requests is aligned in the right arrival window).  

It is the role of the PCE to receive path computation requests in the form of either an IP or FQDN 
destination as well as a source node identifier (which is assigned to each SR by the PCE during the 
bootstrapping process). The result of this operation is the bitarray, as shown in Figure 15, and is 
returned to the requesting, i.e. originating SR. In order to improve HTTP (request/response) 
operations, the PCE will also return the return path from the destination SR to the requesting SR in the 
same operation. This supports requests and responses being sent over different paths in the network. 

 

Figure 15: Service Function Routing SF with SDN-based Bitfield Forwarding 

In terms of component interfaces, the PCE implements the FQDN registration interface SFR1, suitably 
configuring the appropriate SRs for receiving HTTP requests sent to those registered FQDNs. 

4.1.3.3 Authentication 

The authentication sub-component of the SFR handles the certificates being used for HTTPS traffic. 
Generally, the SFR routes requests without specific knowledge of certificates, only utilizing the FQDN 
information in the TLS handshake between client and SR. However, in order to utilize the coincidental 
multicast capabilities outlined in the previous sub-section, the SR will need to partially decrypt and re-
encrypt the incoming HTTP request in order to determine a suitable request identifier for possible 
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multicast responses. The certificate is provided via the SFR1 interface to the PCE1, which in turn stores 
the certificate information in the authentication sub-component. 

4.1.3.4 Policy Enforcement 

The path based forwarding and the utilization of the PCE sub-component allows for attaching policies 
to the computation of suitable paths as well as the selection of suitable SFEs from a set of possible 
available ones. The Policy Enforcement sub-component implements the handling of provided policies 
by verifying those policies and providing them as suitable constraints to the PCE sub-component. In 
the beta release of the FLAME platform, a default policy of ‘shortest path’ is implemented for the path 
calculation, selecting the nearest SFE from a set of possible available ones. For the release candidate 
of the FLAME platform, we foresee exposing a suitable component-level interface to the SFEMC, which 
will derive policies from provided TOSCA templates. 

4.1.3.5 Forwarding at Infrastructure Level 

The SFR relies on infrastructure level forwarding operations that utilize the bitfield information of the 
forwarding path, outlined in Section 4.1.3.2. There are two known realizations of this forwarding 
operations, namely: 

 SDN-based: This solution encapsulates the packets into a standard Ethernet frame format. It 
utilizes the IPv6 source and destination fields of the Ethernet header for storing the 
aforementioned bitarray. During the bootstrapping of the network during the orchestration of 
the infrastructure-facing resources (not the media component facing ones), the PCE will 
interact with the SDN-based infrastructure to configure suitable forwarding rules in each 
intermediary SDN switch of the infrastructure. For each SDN switch, a number of rules needs 
to be defined that is propositional to the number of supported hardware output ports (often 
48) at said local switch. The forwarding is realized by checking the unique bitposition for each 
individual output port and, if set to 1, forwarding the incoming packet over said output port. 
With that, multicast transmission is easily supported, as shown in Figure 15. The required SDN 
match operation is that of a wildcard (with the wildcard being the bitarray with only the 
specific output port bitposition set) and is supported with OpenFlow V1.2 [OpenFlow] 
upwards, i.e., in most commercially available SDN switches. For more information on this 
forwarding approach, see [Reed16], including memory costs.  

 BIER-based: The Bit Indexed Explicit Replication (BIER) working group of the IETF has been 
defining a bit-based forwarding solution similar to that outlined above for SDN. Instead of 
labelling links, the specific egress, i.e. outgoing, router is specified with a unique bitposition in 
a given bitarray. The principles of path construction as well as ad-hoc multicast delivery (by 
combining two or more paths into a single multicast one by a simply binary OR) remain the 
same. Mappings of the BIER forwarding architecture are provided over SDN, MPLS and other 
transport networks. [Pur18] outlines the use case for an HTTP-specific SR utilizing such 
forwarding solution. 

                                                            
 
 

1 At the stage of the beta release, the certificate is still provided via a separate management webGUI but we expect to move 
this upload capability to the SFR1 interface for the release candidate of the FLAME platform. 
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4.1.3.6 Protocols for Realizing the Sub-SF Interactions 

Given the distributed nature of the SR and PCE interaction, there are a number of protocols involved 
in the coordination of those sub-components, dealing with path requests, forwarding updates, 
certificate sharing and others. Those protocols are currently specified as part of the work in the IETF 
Service Functions Chaining (SFC) WG with a current version of the standard contribution available at 
[Trossen18]. We expect future FLAME platform releases to align to those specifications.  

4.1.4 CLMC 

The sub-components of the Cross Layer Management and Control component are shown in Figure 16. 

 

Figure 16: Sub-Components of the Cross Layer Management and Control 

Data acquisition is achieved in accordance with the CLMC information model designed to support 
service management and control decisions. Specifically, the information model supports the 
exploration and understanding of state and factors contributing to changes in state over time as shown 
in the primitive below: 

 

Figure 17: CLMC Configuration State 

The overall system (infrastructure, platform and media services) is composed of a set of configuration 
items that transition between different states during the lifecycle of the system. Configuration items 
of interest include significant components whose state change influence the response of the system. 
In general, the information supports the process of: 
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 Identification of significant configuration items within the system 

 Assertion of state using configuration measurements 

 Measurement of response from monitoring measurements 

 Support for taking action in relation to configuration state 

Configuration information describes the structure and state of the system over time. Each 
configuration item has a lifecycle that defines configuration states and events that cause a transition 
between states. Monitoring measures the behaviour of the system and system components overtime 
including metrics associated with usage and performance. Measurements are made within the context 
of a known configuration state. Usage monitoring information can include measurements such as 
network resource usage, host resource usage and service usage. Performance monitoring information 
can include measurements such as latency (seconds/request), throughput (requests/second), average 
response time and error rates. 

A media service is as "An Internet accessible service supporting processing, storage and retrieval of 
content resources hosted and managed by the FLAME platform". A media service consists of one or 
more Service Functions that together are composed to create an overall Service Function Chain. SFs 
are realised through the instantiation of virtual machines (or containers) deployed on servers based 
on resource management policy. Multiple VMs may be instantiated for each SF to create surrogate 
SFs, for example, to balance load and deliver against performance targets such as latency. Media 
Services, SFCs, SFs, VMs, links and servers are all examples of configuration items. 

Media services are described using a template structured according to the TOSCA specification 
(http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html). A TOSCA template includes all of 
the information needed for the FLAME orchestrator to instantiate a media service. This includes all 
SF's, links between SFs, resource specification and policy information. The TOSCA template provides 
the initial structure of the Media Service information model through specified service and resource 
configuration. Within this structure, system components are instantiated whose runtime 
characteristics are measured to inform management and control processes. Measurements relate to 
individual SF's as well as aggregated measurements structured according the CLMC information model. 
Measurements are made by monitoring processes deployed with system components. The configured 
items provide the context for measurements. 

The information model in relation to the high-level media service lifecycle is shown in  
Figure 18. The lifecycle includes processes for design (packaging) and runtime orchestration, routing 
and SF endpoint management/control. Each stage in the process creates context for decisions and 
measurements within the next stage of the lifecycle. Packaging creates the context for orchestration 
whilst orchestration creates the context for endpoint instantiation, and network topology 
management.  
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Figure 18: CLMC Information Model 

The primary measurement point for a media service is an SF endpoint. An SF endpoint is an 
instantiation of a Service Function within a Virtual Instance on a Cluster. An SF endpoint exists within 
two main contexts: media service and virtual infrastructure. The media service context relates to the 
use of the endpoint within a service function chain designed to process and deliver content. The virtual 
infrastructure context relates to the host and network environment into which the endpoint is 
deployed. Deploying monitoring agents in different contexts and sharing information between 
contexts is a key part of cross-layer management and control. 

The diagram highlights the need to monitor three views on an endpoint: network, host, and service. 
The measurements are captured by different processes running on servers but are brought together 
by common context allowing the information to be integrated, correlated and analysed. The endpoint 
can measure a service view related to the content being delivered such as request rates, content types, 
etc, a VM can measure a virtual infrastructure view of a single endpoint, and the network view can 
measure an infrastructure view across multiple endpoints deployed on a server. These monitoring 
processes running on the server are managed by different stakeholders, for example, the platform 
operator would monitor servers, where by the media service provider would monitor service specific 
usage. 

 

Figure 19: Decision context and decision data 

Every measurement has a measurement context. The context allows time-based series to be created 
according to a set of query criteria, which are then be processed to calculate statistical data over the 
desired time-period for the series. The FLAME information model supports KPIs calculated from 
measurement fields and dimensions encoded within measurement tags. This lightweight 
implementation allow for a broad range of questions to be asked about the cross layer information 
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acquired. The designing of context for measurements allows for integration and processing of between 
data from multiple monitoring sources. The design principles adopted include: 

 identify common context across different measurements 

 where possible use the same identifiers and naming conventions for context across different 
measurements 

 organise the context into hierarchies that are automatically added to measurements during 
the collection process 

All of the measurements on a SF endpoint share a common context that includes tag values: 

 flame_sfc – an orchestration template (a.k.a. Service Function Chain) 

 flame_sfci – an instance of the orchestration template (a.k.a. Service Function Chain Instance) 

 flame_sfp – the package a service function is using (a.k.a. Service Function Package) 

 flame_sf – the service function defined in the TOSCA resource specification (a.k.a. Service 
Function) 

 flame_sfe – an authoritative copy of the SF - either VM or container (a.k.a. Service Function 
Endpoint) 

 flame_server – a cluster VM inside which service function endpoints are placed (at the current 
stage, the value of this tag is the same as the location tag) 

 flame_location – the location of the server - physical machine that hosts the cluster VM 

Not all information acquired will be aggregated and stored within the CLMC. The CLMC is not 
responsible for capturing every measurement point related to transferring bytes over the network. It 
is also not responsible for capturing every interaction between a user and a service. The key design 
principle is to acquire information from one context that can be used in another context. For example, 
instead of recording every service interaction, an aggregate service usage metric (e.g. request rate/s) 
would be acquired and stored, and the similar aggregation would be needed for infrastructure 
monitoring. 

4.1.5 Data Acquisition 

Data Acquisition collects time-series measurements from different layers including infrastructure, 
platform and media services. Data is collected to support service design, management and control 
decisions resulting in state changes in configuration items. The link between decisions and data is 
through queries and rules applied to contextual information stored with measurement values. 

The monitoring model uses an agent-based approach with hierarchical aggregation used as required 
for different time scales of decision-making, as shown in Figure 20.  
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Figure 20: Data Acquisition Architecture 

To monitor a SF an agent is deployed on each SF endpoint. The agent is configured with measurement 
context incrementally at difference stages of its lifecycle. During packaging, the media service 
developer installs the monitoring agent and configures the SF package name. A whoami service is also 
installed on each SF endpoint to discover runtime context from the platform including the Service 
Function Chain, Service Function Chain Instance, Cluster, Service Function IDs, and endpoint ids.  

4.1.6 TOSCA Alert Parser 

TOSCA Alert Parser parses and validates an Alerts Specification Document and configures time-series 
queries, conditions and notification handlers configured to receive activated trigger events.  The alert 
specification is written in YAML and is a TOSCA-compliant document according to the TOSCA simple 
profile.  

The Alerts Specification Document consists of two main sections - metadata and policies. Each policy 
contains a set of triggers. A trigger is a fully qualified specification for an alert. The metadata section 
specifies the service function chain ID to which the alert specification relates. The policies section 
defines a list of policy nodes, each representing a fully qualified configuration for an alert within the 
CLMC. Each policy must be of type eu.ict-flame.policies.Alert.  

The Alert Specification includes a policy_identifier that must match with a StateChange policy in the 
TOSCA resource specification used to define a media service that is submitted to the Orchestrator. The 
event_identifier is the name of the event and must match with the constraint event in the TOSCA 
resource specification. An event_type refers to the process used to create the alert. This includes the 
how data is processed and the conditions under which the alert is triggered, for example, threshold, 
relative or deadman conditions. A set of configuration defines the conditions for triggering an alert. 
This includes 

 Metric: the measurement name and field  

 Threshold: the critical value compared to the measured value using threshold, relative or 
deadman 

 Granularity: period to consider in seconds 
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 Aggregation_method: statistical function to apply to data points over period 

 Resource_type: global tags to uniquely identify the context for the event  

 Comparison_operator: logical operator for use in comparison between measured value and 
threshold 

 Implementation: a list of the URL entries for alert handlers to which alert data is sent when 
the event condition is true. Alerts can be sent to media services or platform services. If the 
alert is to be sent to SFEMC, then instead of typing a URL a well-known label flame_sfemc is 
used. 

4.1.7 Alert Management 

Alert Management triggers notification events based on conditional policies associated with time-
series measurements. Every alert handler registered in a trigger action --> implementation section of 
the TOSCA Alerts Specification Document receives an alert message when the trigger event condition 
is true. This alert message is sent using an HTTP POST request to the URL of the alert handler. The alert 
message includes 

 id: trigger ID as defined in the alert specification document 

 level:  the level of the alert; currently all alerts that trigger have their level set as CRITICAL 

 previousLevel:  the previous level of the alert 

 details: the context for the alert in the format 
"db=<db_name>,sfc=<sfc_id>,sfci=<sfc_instance_id>,policy=<policy_id>"  

 duration: integer, duration of the alert in nanoseconds 

 time: timestamp of the point that triggered the alert 

 data: describes the point(s) that triggered the alert 

 data.series.name: the name of the measurement 

 data.series.tags:(OPTIONAL) key-value pairs for all measurement tags used to filter the data 
series 

 data.series.columns: list of column names used to trigger the alert 

 data.series.values: list of list of values, each nested list represents a measurement point and 
the values for each column 

4.1.8 Graph Analytics 

Graph Analytics connect related time-series data sets and allows complex pattern matching using 
graph structure and node properties. Graph analytics is used to understand system level properties, 
for example, end-to-end response time of a service function chain.  
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The topology of a system graph is constructed from smaller topologies representing different aspects 
of the overall system.  Each topology has a different lifecycle and dynamic characteristics that need to 
be considered. Each topology consists of Nodes representing configuration items with properties 
defining state, along with Edges between nodes defining relationships which themselves can have 
properties (e.g. network latency between Clusters). 

 

Figure 21: Relationship between topologies 

The Infrastructure Topology is an infrastructure slice defined in terms of Clusters and Network Links 
between them. The topology is derived from the infrastructure slice provided to the Platform Provider 
on deployment. The topology is considered relatively fixed as it represents the wholesale capacity 
allocated to the Platform Provider. The Media Service Topology is the design-time Service Function 
Chain defined in terms of SFs and connections between them. The topology is derived from the TOSCA 
Resource Specification and it provides an abstract definition of the media service workflow. The Service 
Function Topology is the set of SFs created when a media service is deployed. SFs are still abstract as 
they represent a one or more Service Function Endpoints deployed within the platform. Finally the SF 
Endpoint topology is derived from the deployed SF endpoints and represents all surrogates deployed 
as part of the media service on the infrastructure slice. 

Graphs are created dynamically to support specific analytics and queries over the system properties. 
The overall structure of the graph is consistent across all Nodes and Edges as this represents the 
information model of the CLMC. The infrastructure properties are also consistent across all graph 
queries including the relationship between SF Endpoints and Clusters as the infrastructure model is 
homogeneous. The properties of specific SF Endpoints varies depending on the type of service, 
although the common KPI taxonomy allows for general abstractions, aggregation and normalisations 
can to be defined (e.g. Response Time) even though the measurement fields from data acquisition use 
different naming conventions or sampling periods.   

Figure 22 shows the process of graph building and analytics. The process is initialised to build the initial 
graph from the infrastructure and media service topologies, along with configuring the continuous 
queries to acquire, aggregate and normalise the desired SF Endpoint properties over a specified time-
period. The continuous queries execute periodically to add new nodes to the graph representing state 
of a SF Endpoint over the period. The graphs are created automatically from the measurement context 
data reported by the monitoring agents. A subsequent graph query is executed continuously to 
determine system measurements and stores these as monitoring data in time-series database for 
visualisation or further higher-level analytics.   
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Figure 22: Graph building and analytics processes 

4.1.9 Data Analysis Dashboard 

Data Analysis Dashboard provides a human interface to time-series data sets allowing the exploration 
of available measurements including resource usage and performance. The dashboard allows 
monitoring views to be configured that are specific to stakeholders or media services.  

4.1.10 Runtime System Models 

Runtime Systems Models simulate media service risk, cost and performance using expert knowledge 
and empirical data derived from runtime systems fast enough to re-orchestrate media service resource 
configuration state at runtime. RSMs can be initiated by media service providers exploring the initial 
conditions for TOSCA resource specifications or can be triggered in response to Alerts. Many different 
techniques exist to explore system behaviour (e.g., constraint based optimisation, Monte Carlo 
simulation, semantic reasoning, etc.). FLAME is not prescriptive on the approach, however, the 
inclusion of RSMs in the architecture is necessary to link operational management and decisions to 
service performance, especially in highly dynamic systems where changes to infrastructure slices and 
service function chains are to be expected. 
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5 SERVICE FUNCTION CHAINS 

The following subsections present various SFCs for the main internal interactions between core 
components of the platform architecture, as shown in Figure 1. We divide the interactions into various 
areas. We will start with the experimentation SFC, which connects with the management & control SFC 
for driving the management policies of the experiment into the FLAME platform. We then outline the 
main (FMI) data plane SFC for the exchange of media service interactions over the data plane provided 
by the FLAME platform. Due to the core contributions of the service function routing solution to the 
benefits of the FLAME platform, as outlined in D2.1, we further decompose the service routing 
component of our platform into the specific service function routing SFC. As a crucial enabler for the 
controllability and observability of our platform, we further decompose the CLMC part of our platform 
as a dedicated SFC. 

Throughout the presentation of the various SFCs, we will reference the specific component interfaces 
being utilized. There will, however, be several SFC-internal interfaces and protocols, whose exact 
details are not within the scope of D3.10 but will be covered throughout the various realizations of the 
SFCs in WP3. We will also utilize the colour coding of Figure 1 to indicate which component realizes 
which service function.   

5.1.1 Orchestration SFC 

Figure 23 shows the orchestration process of SFs into a specific Media Service cluster. The MSP 
describes its service in a TOSCA resource specification file (orchestration template) and provides this 
to the orchestrator’s validator unit (1a). The CLMC may optimise the resource specification in a dialog 
with the MS provider (1b). Both steps utilize the O1 interface of the Orchestrator component. The 
resource specification also includes package pointer of the MS repository the SFEMC should pull from. 
Such images may contain full VM package or only containerized MS packages. 

 

Figure 23: Orchestration of SFs 
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After the template is provided, the validator validates at syntactical and semantical level against the 
TOSCA NVF and FLAME specifications (2). When successful, it will be forwarded to the parser element 
to interpret the content and create data objects for the orchestrator (3). 

The parser then forwards the data objects towards the SFEMC (4) via the SFEMC1 interface. These data 
objects include the pointer for the MS package, the type of virtualization and the target state (see 
Section 5.1.2) of the deployed instances. 

The SFEMC performs a package pull and deploys an instance on the targeted MS cluster with the given 
SF state (5 and 6). The targeted state must not be Non-Placed to perform this action. After the pull 
and initial deployment are performed the SFEMC sets the SF instances into the targeted state per 
cluster. 

The SFs are then deployed on the targeted MS cluster with the targeted state. 

5.1.2 SFE Management & Control SFC 

SFs are initially deployed by the FLAME platform orchestrator as SFEs and the SFE’s state is controlled 
by the SFEMC. Via State Policies on orchestration level, the SFEs may be located on defined clusters 
with a finalised SFE’s state. Every possible SFE’s state is reflected in the SFE’s State Machine as depicted 
in Figure 24. A SFE state target can be Non-Placed, Placed, Booted or Connected. Furthermore, the 
state machine contains transitional states. However, such states are not selectable as a target state. 
They offer a finer grained view of any change from one state to another. Before entering and leaving 
a transitional state and event is raised via the Service Function Monitor (see Section 4.1.2) on FLAME 
platform level. The events are labelled as function calls between the states. 

 

Figure 24: Service Function State Machine with Transition States 

The lifecycle state of such SF may change during the lifetime of the deployed service. This may be 
caused by external influences such as monitoring data, time schedules, network topology changes or 
failures on hard- or software level. Such an external influence may come from the FLAME’s platform 
CLMC. Figure 25 shows the interaction between the Orchestrator, CLMC, SFR, and the SFEMC for 
deploying and controlling of SFEs. After parsing the orchestration template, the Orchestrator provides 
the suitable SF information to the Service Function Control sub-component of the SFEMC via the 
SFEMC1 interface. This in turn instructs the Virtual Instance Manager to initiate the appropriate SFE in 
the state specified in the template, while instructing the PCE of the SFR component via the SFR1 
interface to register the FQDN of the SFE. 
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Figure 25: Interaction between CLMC and SFEMC 

Furthermore, the Service Function Control sub-component of the SFEMC instructs the CLMC, via the 
Config interface, to configure the suitable trigger as specified in the orchestration template for the SFE. 

At the control level, the suitable trigger information is provided from the CLMC to the Service Function 
Control sub-component via the SFEMC2 interface, providing the necessary event information which 
may trigger a lifecycle state change of SF instances within a specific cluster. However, the event source 
is not limited to the CLMC. Other data analysis and trigger procedures may call this interface. The 
general handling based on events is specified in the TOSCA resource specification as a policy and 
related trigger elements respectively. 

5.1.3 Main (FMI) Data Plane SFC 

The main interactions for a media service at the data plane is shown in Figure 26 as being realized 
through the service function routing component of the FLAME platform via the SFR2 data plane 
interface that connects said media components at the data plane level. As indicated in Figure 1, the 
media components itself are not part of the FLAME itself albeit their chaining at the data plane is being 
realized by the FLAME platform. By preserving the data plane abstractions of well-known protocols, 
such as HTTP, RTP or generally any IP-based protocol, the SFC-based decomposition of the FLAME 
platform is not exposed to the media components and therefore the media service developers, 
allowing for utilizing any available composition technique for this part of the overall system. 

 

Figure 26: Main (FMI) Data Plane SFC  

The routing function is realized by the Service Function Routing component of the FLAME platform. 
From an SFC architecture [SFC] perspective, this SF enables flexible and dynamic chaining of the 
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connection service functions, here the media components, including the flexible redirection to 
virtualized instances. This capability is outlined in [Trossen18] and its realization is presented in the 
following subsection. 

5.1.4 Service Function Routing SFC 

Figure 27 further decomposes the Service Function routing SF, introduced in Figure 26, realizing the 
data plane transfer of media service interactions over the underlying infrastructure. In IETF SFC WG 
parlance [SFC], the transfer of the infrastructure is realized as a transport-derived Service Function 
Forwarder (tSFF). The composition is shown as a sub-component architecture in Figure 14. In the 
following sub-sections, we further describe the operations of these sub-SFs.   

 

Figure 27: Service Function Routing SF Decomposition  

The SFC decomposition shown in Figure 27 shows a general realization over an SFC-compliant service 
chaining architecture. With this, media components could be connected via several Layer 2 links to the 
Service function routing SF, e.g., within a cable network.  

In most of our use cases, however, we can assume that media components will be connected to the 
SRs of the SFR via a link-local, e.g., single Ethernet/WiFi, link. Even in the case of the media component 
being hosted in a data centre, the latter would appear as the IP-level endpoint to the FLAME platform 
(with the data centre networking to the actual media component instances being opaque to the FLAME 
platform). For this reason, we can simplify the SFC to the one shown in Figure 28, where the forwarding 
between media components and the SRs are realized by another tSFF2, representing Ethernet-based 
link-local IP-level communication. 
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Figure 28: Service Function Routing SFC with link-local clients and media components 

5.1.5 CLMC SFC 

The SFC decomposition of the CLMC is shown in Figure 29. The SFC describes a stream-processing 
pipeline that delivers stream-based graphs for cross-layer knowledge that can be queried and analysed 
at runtime by media and platform components, or explored by aiming to design templates.  

The SFC is designed to support multiple sources of monitoring information from information providers 
(CLMC6) at the platform and media service levels distributed to the distributed transactional time-
series data storage. Examples of this data include service request events, service response events, 
resource usage from service functions and hosts. This data is high frequency and high volume data that 
is delivered using a Pub/Sub SF. The transactional data sources are stored in a various Transactional 
Data Storage SF sources relevant to the components being monitored. For example, the data stores 
used to store network monitoring may be different from those used to store user interaction and 
media service usage due to factors such as technology, ownership and control. 

The transaction data storage provides an evidence base for system behaviour. The evidence base is 
persistent with appropriate retention and access policies defined according to the needs of queries 
underpinning service management and control decisions. The evidence provides quantifiable data 
supporting hypothesis testing, allows evidence for effectives of the platform to be established, and 
subject to permission, allows multiple stakeholders to explore openly the consequence of collaborative 
decision making in interactive media systems. Where appropriate, parts of the evidence base will be 
made available as open research data.  
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Figure 29: CLMC SFC 

The data sources are then processed by a Data Source Abstraction SF to create data abstractions 
representing the dimensions relevant to specific cross-layer management queries and analytics. The 
creation of abstractions from different data sources can be computationally intensive activity 
considering the scale and velocity of monitoring data. Various abstraction algorithms can be 
considered from simple numerical aggregation to more complex machine learning and graph analytics.   

The selection of the dimensions is driven by queries posed by Alert Management SF (CLMC2). The 
queries are executed by a Query Engine SF (CLMC3) that selects the time-series dimensions (data 
abstractions) needed and accesses graphs stored within the Knowledge Storage SF. The query language 
for time-series analytics is based on InfluxQL2 and RESTful APIs. The generation of the graphs is 
achieved using the Analytics Engine SF as part of the CLMC service, which requests data abstractions 
from time series data and maintains currency of graphs according to query specifications. The graph 
database is uses Neo4J3. The analytics SFs allow the evidence base to be explored in ways that translate 
the evidence into knowledge and decision-making. This knowledge can then be encoded in templates 
describing the configuration of services and resources necessary to achieve specific performance 
outcomes.   

Access to the data is governed by Information Policy Management SF. Information policy defines the 
authorisation rules for access to data sources. It should be noted that all data stored within the CLMC 
is aggregated and anonymised data, and as such the CLMC must not be used to store personal data. 

                                                            
 
 
2 https://docs.influxdata.com/influxdb/v1.7/query_language/spec/ 

3 https://neo4j.com/ 
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6 INFRASTRUCTURE INTEGRATION 

FLAME separates the infrastructure from the platform following an owner <> tenant relationship 
model. For this purpose, certain information about the infrastructure must be passed to the platform 
tenant. Furthermore, it is desired that the platform tenant does not have the rights to create and 
modify certain infrastructure resources, which requires some sort of read-only information exchange. 

At the beginning of the FLAME project, it became apparent that OpenStack is used in the infrastructure 
of Barcelona and Bristol and was on the verge to becomes the industry standard for a Telco-NFV 
environment. Thus, OpenStack has been chosen to orchestrate the FLAME platform. The realisation of 
the workflow described here is OpenStack centric but with the aim to keep it as NFV solution agnostic 
as possible. 

With four sites where the FLAME platform has been deployed so far (testing environments such as IT 
Innovation and InterDigital Europe, as well as in the cities of Barcelona and Bristol), the repeatability 
of such task required an automated and well-structured workflow to deploy the FLAME platform in a 
new infrastructure. The outcome is an Automated platfoRm DEploymeNt Toolchain (ARDENT). 

6.1.1 Purpose and Workflow 

Figure 30 illustrates the workflow to deploy the FLAME platform. The four circles represent the major 
steps to achieve this goal and the responsibly is split between the infrastructure and platform 
providers, as indicated.  

 

Figure 30: Workflow for Deployment of Platform  

The very first step for an infrastructure provider is to plan the resources that should be given to the 
infrastructure tenant, i.e., compute, storage and networking. The creation of the various data plane as 
well as management plane networks is part of this procedure and results in the infrastructure set-up.  

The infrastructure descriptor is a graphviz-based descriptor communicating the components of the 
infrastructure topology (compute nodes, infrastructure services, SDN switching fabric) as well as their 
physical connection and the names of the provider networks.  

From the infrastructure descriptor the tenant variables are derived and populated in a knowledge base 
which is shared with the next two tasks, i.e. setting up the tenant, creating the platform descriptor and 
eventually deploying the platform. 
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The tenant set-up is a collection of bash scripts with several variable files which comprise 
infrastructure provider-independent and infrastructure provider-specific values. The scripts allow the 
infrastructure provider to a) set up the FLAME tenant using an automated procedure and b) to share 
all necessary values which describes the NFV platform and allows the platform provider to write the 
platform descriptor and to deploy the platform eventually. 

Given that OpenStack is the chosen NFV realisation the platform descriptor is a HEAT-based YAML file 
describing where certain platform instances are deployed and which networks they attach to. The 
information required to write the platform descriptor is taken from the infrastructure descriptor and 
the variable files written in the tenant set-up activity. 

The last step is the platform deployment where the platform descriptor is given to OpenStack via its 
CLI.  

6.1.2 Networks, Subnets and Security Groups  

Figure 31 illustrates the provider networks including their purpose on the infrastructure level. 

 

Figure 31: Infrastructure Tenant Networks and their Purpose 

The platform networks allowing access to infrastructure resources are: 

 WAN: The network to access the internet through one or more IP gateways of the 
infrastructure provider and a dedicated DNS (if provided). If the infrastructure provider does 
not maintain their own DNS, a public DNS is used (e.g., OpenDNS or Google). This network 
must be configured with DHCP, a gateway and a DNS server 

 SDNCTRL: The network to reach the SDN controller from any deployed platform instance. This 
network must be configured with DHCP but no gateway or DNS server 

 DATA: The network for interconnecting the compute nodes via the underlying SDN switching 
fabric of the infrastructure provider. Note, most infrastructure providers create dedicated 
DATA networks between an SDN switch port and a compute node often using VLANs. 
Therefore, the number of DATA networks very often equals the number of SDN ports 
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configured for the platform. This network is treated by the platform as an L2 link and does not 
require any IP configuration in the NFV platform. If the infrastructure provider does not own 
its own SDN switching fabric a single DATA network must be created though to allow platform 
instances to communicate with each other.  

 ACCESS: The network that allows the platform to handle traffic from end devices connected to 
the infrastructure via point of attachments (WiFi, cellular, cable). As for the DATA network, the 
ACCESS network is most likely configured using VLANs and one network per PoA is therefore 
created to connect the PoA and specific compute node. The IP assignment of IP endpoints 
attached to this network is done via a platform service rather than an infrastructure one. The 
platform provider refers to this network as the LAN. 

 SIA: This network provides a secured inbound access (SIA) towards the FLAME frontend 
platform instance that allows service providers to deploy and maintain their service function 
chains. 

For managing the platform instances a MGMT network is required which allows the platform provider 
to manage and maintain its deployed platform instances. 

Furthermore, the following platform networks are required: 

 CLMC: The network that allows to let the CLMC and its SR to communicate via IP 

 CLUSTER: The network that allows a cluster instance to communicate via IP with its SR 

 PS: The network that allows the PCE/SFEMC instance and all platform service instances to 
communicate with their SR 

 MSP: The network allows a media service provider to access the orchestrator, CLMC and the 
service function repository to create, maintain and configure their deployed service function 
chains. 

Table 7 lists the various networks, subnets and security groups previously described and their 
properties and also when they are created during the work-flow, as described in Section 6.1.1. 

Table 7: Networks, Subnets and Security Groups for FLAME Platform 

Network 
Type 

Created 
When 

Subnet DHCP IP 
GW 

DNS Security Group 

Configured Created 
when 

Configured Created when 

WAN Infrastructure 
Set-up 

Yes Infrastructure 
Set-up 

Yes Yes Yes Yes Infrastructure 
Set-up 

SDNCTRL Infrastructure 
Set-up 

Yes Infrastructure 
Set-up 

Yes No No Yes Infrastructure 
Set-up 

DATA Infrastructure 
Set-up 

No --- --- --- --- No --- 

SIA Infrastructure 
set-up 

Yes Infrastructure 
set-up 

Yes No No Yes Infrastructure 
set-up  

ACCESS Infrastructure 
Set-up 

Yes Platform 
Deployment 

Yes No No No --- 
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MGMT Tenant Set-
up 

Yes Infrastructure 
Set-up 

Yes No No Yes Tenant Set-up 

CLUSTER Platform 
Deployment 

Yes Platform 
Deployment 

Yes Yes Yes No --- 

PS Platform 
Deployment 

Yes Platform 
Deployment 

Yes No No No --- 

MSP Platform 
Deployment 

Yes Platform 
Deployment 

Yes No No Yes Tenant Set-up 

6.1.3 Infrastructure and Platform Descriptors 

As previously mentioned, ARDENT requires an infrastructure descriptor as an input which allows the 
infrastructure provider to communicate the essentials about its environment to the platform provider, 
i.e.: 

 SDN switching fabric and their topology 

 NFV compute nodes and their available resources to the platform provider (CPU, RAM, Disk) 

 Infrastructure services such as DNS and infrastructure IP GWs to be used by the platform 

 Infrastructure networks and security groups for the platform provider 

Once the infrastructure tenant has been set up successfully through ARDENT a platform descriptor is 
generated which describes the desired orchestration of the platform. The platform descriptor is a 
YAML-based HEAT template that is tuned towards OpenStack’s orchestrator and how OpenStack 
abstracts networks and security groups. The generation platform descriptor is based on some best 
current practises when it comes to compute nodes, their compute capabilities and where to place 
which platform functionality.  

Even though the infrastructure in Barcelona and Bristol look severely different when it comes to 
network topology and compute capabilities, some important similarities can be discovered which helps 
the automation of generating the platform descriptor, i.e.: 

 The closer a compute node is located to the edge, the smaller its capabilities are 

 Each location in the city has one compute node 

 Each compute node is placed into its own availability zone 

Based on the assumptions and best current practices described above ARDENT is placing the core 
platform nodes such as PCE/SFEMC, ICW GW, CLMC and all platform services (DNS, DHCP and IP GW) 
to the Tier 1 compute node (data centre). All remaining resources (CPU, RAM and disk) in the Tier 1 
compute node are given to the cluster instance.  

Compute nodes with ACCESS networks are treated as Tier 3 edge computing nodes where one SR is 
placed serving the UE attaching to the ACCESS network and one SR for the Tier 3 cluster instance. The 
remaining resource is allocated to the cluster instance itself. 

If there is a compute node which is not a Tier 1 or Tier 3 one ARDENT treats it as a Tier 2 environment 
and placed a single SR with a cluster there where the cluster again maxes out the available resources 
(minus the SR). 
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7 CONCLUSIONS 

This document provides an update to the specifications for the FLAME platform and infrastructure, 
built on the first release in D3.3. We have removed the cornerstones for the architecture development, 
such as ecosystem, use cases and requirements due to their unchanged nature, focussing the update 
on the component-level architecture, its sub-components and the interfaces between them. We also 
included a separate infrastructure integration section.    
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