

Grant Agreement No.: 731677
Call: H2020-ICT-2016-2017

 Topic: ICT-13-2016
Type of action: RIA

D3.5: FLAME Technology Roadmap V1
 Michael Boniface (IT Innovation Centre) | 20 November 2017

This report is the first technology roadmap for a ground-breaking media service delivery platform being
developed by the FLAME project. The report describes the software products to be delivered at
infrastructure, platform and media service layers and how combinations of products are used to
exploit the benefits of highly distributed software-defined infrastructures. Each product is described
in terms of features, baseline implementation technologies and release schedule. At the core of the
roadmap is the FLAME platform that brings together components for orchestration, Service Function
Routing, Service Function endpoint management and cross-layer management and control. A systems
integration and testing plan describes the DevOps environment including multi-project structure,
development workflows and continuous integration processes supported by build, provisioning,
configuration and automated testing tools. A software integration infrastructure is designed that
replicates a part of the production infrastructures in ways that allows flexible configuration of different
cross-component test scenarios. Finally, the downstream staging and production infrastructures are
summarised completing the end-to-end DevOps pipeline for efficient and high-quality delivery.

D3.5: FLAME Technology Roadmap V1 | Public

Page 2 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Work package WP 3

Task Task 3.4

Due date 30/09/2017

Submission date 20/11/2017

Deliverable lead IT Innovation

Version 1.1

Authors
Michael Boniface (IT Innovation), Simon Crowle (IT Innovation), Dirk Trossen
(InterDigital), Istvan Lajtos (BRISTOLOPEN) , Carlos Alberto Martin Edo (Atos), Pouria
Sayyad Khodashenas (i2CAT), Marisa Catalan Cid (i2CAT), David Jones (BRISTOLOPEN)

Reviewers Gino Carrozzo (NXW), Julia Chatain (ETH)

Keywords Media Services, Software-defined infrastructures, technical roadmap, systems
integration, DevOps

Disclaimer

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 731677.

This document reflects only the authors’ views and the Commission is not responsible for any use that
may be made of the information it contains.

Project co-funded by the European Commission in the H2020 Programme

Nature of the deliverable: R

Dissemination Level

PU Public, fully open, e.g. web ü

CL Classified, information as referred to in Commission Decision 2001/844/EC

CO Confidential to FLAME project and Commission Services

D3.5: FLAME Technology Roadmap V1 | Public

Page 3 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

EXECUTIVE SUMMARY

This report is deliverable D3.5 FLAME Technology Roadmap V1 of the FLAME project. The report
describes the roadmap for development, integration and production deployment of a ground-breaking
media service delivery platform. The roadmap aims to deliver software products deployed as
operational services on real-life software-defined infrastructures for trials and experimentation. The
primary purpose of the trials is to validate the FLAME offering by delivering performance and cost
benefits to media service providers and enhanced quality of experience to end users.

The roadmap considers activities across all layers of the stack covering infrastructure, platform and
media services. Each layer has one or more software products that is deployed to offer services at
infrastructure, platform or media service layers with each software product having its development
roadmap and schedule. At the infrastructure layer, different solutions are considered depending on
how elements such as routers, switches and compute are realised through software or hardware
implementations. The infrastructure is based on common technologies for the management of
virtualized infrastructures (i.e. OpenStack) and agreed specifications for the SDN Fabric (i.e. Open
Flow). On top of the virtualized infrastructures the FLAME Platform product is deployed. The Platform
product is the core of the project and brings together advanced components offering media service
orchestration, service function endpoint management, service function routing and cross-layer
management and control. Finally, a set of Media Service products are deployed within the Platform to
offer a variety of media service capabilities enhanced through platform features. This report describes
the high-level features of each product and the release schedule. For each Platform product more
detail is provided including a feature analysis that maps features to requirements, component
interfaces, and an overall critical path analysis for implementation. The high-level release schedule for
FLAME software products and FLAME services is shown in Figure 1.

Figure 1: High-Level roadmap for FLAME product and service releases

A systems integration and testing plan describes the DevOps environment including multi-project
structure, development workflows and continuous integration processes supported by build,
provisioning, configuration and automated testing tools. A software integration infrastructure is
designed that replicates part of the production infrastructures in ways that allow flexible configuration
of different cross-component test scenarios. Finally, the downstream staging and production
infrastructures are summarised completing the end-to-end DevOps pipeline for efficient and high-
quality delivery. The overall roadmap is designed to ensure alignment of activities across all work

D3.5: FLAME Technology Roadmap V1 | Public

Page 4 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

packages in the project from component development, integration through to trials and
experimentation.

D3.5: FLAME Technology Roadmap V1 | Public

Page 5 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

TABLE OF CONTENTS

1 INTRODUCTION .. 10

1.1 Purpose ... 10

1.2 Scope ... 10

1.3 Delivery Partners ... 11

2 TECHNOLOGY ROADMAP .. 12

2.1 Project Milestones ... 12

2.2 Overview of Software Products ... 12

2.3 Infrastructure Product Roadmap .. 16

2.4 Platform Product Roadmap ... 22

2.5 Media Service Product Roadmap .. 39

3 SUPPORTING TRIALS AND EXPERIMENTATION .. 44

3.1 Experimentation Without Constraints of Physical Location .. 44

3.2 Reduction in Experimentation Time .. 45

4 SYSTEMS INTEGRATION .. 47

4.1 Integration Strategy .. 47

4.2 Projects, Workflows and Tooling ... 48

4.3 Integration Test plan ... 54

4.4 Integration Infrastructure ... 56

5 CONCLUSIONS .. 61

D3.5: FLAME Technology Roadmap V1 | Public

Page 6 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

LIST OF FIGURES

FIGURE 1: HIGH-LEVEL ROADMAP FOR FLAME PRODUCT AND SERVICE RELEASES 3

FIGURE 2: FLAME PLATFORM ENGINEERING REPORTS ... 10

FIGURE 3: PLATFORM RELEASES IN RELATION TO PROJECT MILESTONES ... 12

FIGURE 4: FLAME SOFTWARE PRODUCTS IN RELATION TO ARCHITECTURE .. 13

FIGURE 5: HIGH LEVEL PRODUCT DEPENDENCIES .. 14

FIGURE 6: OVERVIEW OF SOFTWARE PRODUCT INTEGRATION AND RELEASE .. 15

FIGURE 7: RELATIONSHIP BETWEEN INFRASTRUCTURE AND INFRASTRUCTURE PRODUCTS 18

FIGURE 8: BRISTOL STAGING INFRASTRUCTURE CONFIGURATION ... 19

FIGURE 9: BRISTOL PRODUCTION INFRASTRUCTURE CONFIGURATION .. 20

FIGURE 10: BARCELONA PRODUCTION INFRASTRUCTURE CONFIGURATION .. 21

FIGURE 11: SUPPORTING ORCHESTRATION AT DIFFERENT LEVELS OF THE OVERALL FLAME SYSTEM 23

FIGURE 12: ORCHESTRATION CRITICAL "FEATURE" PATH FOR ALPHA RELEASE 25

FIGURE 13: RELEVANT SERVICE FUNCTION CHAIN FOR ALPHA RELEASE ... 25

FIGURE 14: SF ENDPOINT MANAGEMENT & CONTROL CRITICAL "FEATURE" PATH FOR ALPHA RELEASE 27

FIGURE 15: SF ROUTING CRITICAL "FEATURE" PATH FOR ALPHA RELEASE ... 31

FIGURE 16: CLMC CRITICAL "FEATURE" PATH FOR ALPHA RELEASE .. 35

FIGURE 17: CLMC SERVICE FUNCTION CHAIN FOR ALPHA RELEASE .. 36

FIGURE 18: MEDIA SERVICES AND MEDIA COMPONENTS .. 40

FIGURE 19: FLAME CONTINUOUS INTEGRATION AND DEPLOYMENT PIPELINES 47

FIGURE 20: PLATFORM PRODUCT INTEGRATION PIPELINE ... 49

FIGURE 21: PLATFORM INTEGRATION TOOLS .. 50

FIGURE 22: HIGH LEVEL PRODUCT INTEGRATION PROCESS .. 51

FIGURE 23: PLATFORM PROJECT WORKFLOW ... 51

FIGURE 24: SAMPLE COMPONENT PROJECT WORKFLOW .. 53

FIGURE 25: LOGICAL TOPOLOGY OF INTEGRATION INFRASTRUCTURE DATA PLANE 57

FIGURE 26: INTEGRATION INFRASTRUCTURE MANAGEMENT AND CONTROL PLAN 58

D3.5: FLAME Technology Roadmap V1 | Public

Page 7 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

LIST OF TABLES

TABLE 1: FLAME CONSORTIUM PARTNERS .. 11

TABLE 2: FLAME SOFTWARE PRODUCTS .. 14

TABLE 3: PARTNER RESPONSIBILITIES ACROSS PRODUCT IMPLEMENTATION, INTEGRATION AND
DEPLOYMENT ACTIVITIES .. 15

TABLE 4: INFRASTRUCTURE FLAVOURS .. 16

TABLE 5: INTEGRATION AND PRODUCTION INFRASTRUCTURES ... 17

TABLE 6: BRISTOL STAGING INFRASTRUCTURE RESOURCE SPECIFICATION ... 19

TABLE 7: BRISTOL PRODUCTION INFRASTRUCTURE RESOURCE SPECIFICATION 20

TABLE 8: BARCELONA STAGING INFRASTRUCTURE RESOURCE SPECIFICATION 21

TABLE 9: BARCELONA PRODUCTION INFRASTRUCTURE RESOURCE SPECIFICATION 22

TABLE 10: ORCHESTRATION FEATURES .. 24

TABLE 11: ORCHESTRATION IMPLEMENTATION TECHNOLOGY SUMMARY .. 26

TABLE 12: SF ENDPOINT MANAGEMENT & CONTROL FEATURES ... 27

TABLE 13: SFEMC IMPLEMENTATION TECHNOLOGY SUMMARY .. 28

TABLE 14: SF ROUTING FEATURES ... 29

TABLE 15: SFR IMPLEMENTATION TECHNOLOGY SUMMARY ... 30

TABLE 16: CLMC FEATURES .. 33

TABLE 17: CLMC IMPLEMENTATION TECHNOLOGY SUMMARY .. 37

TABLE 18: PLATFORM FEATURE ROADMAP ... 39

TABLE 19: MEDIA COMPONENT PRODUCTS ... 42

TABLE 20: MEDIA SERVICES RELEASE PLAN .. 43

TABLE 21: HOW FLAME’S FEATURES SUPPORT EXPERIMENTATION INDEPENDENT OF PHYSICAL LOCATION
 45

TABLE 22: KPIS FOR TRIALS AND EXPERIMENTS WITHOUT CONSTRAINTS OF PHYSICAL LOCATION OR
ACCESS TO A SPECIFIC EXPERIMENTAL FACILITY .. 45

TABLE 23: HOW FLAME’S FEATURES SUPPORT REDUCTION IN EXPERIMENTATION TIME 46

TABLE 24: KPIS FOR REDUCTION OF THE TIME TO EXPERIMENT ... 46

TABLE 25: FLAME CONTINUOUS INTEGRATION PIPELINE PHASES .. 48

TABLE 26: SOFTWARE PROJECT MANAGEMENT TOOLS ... 48

TABLE 27: PLATFORM PROJECT AND COMPONENT PROJECTS ... 48

TABLE 28: PLATFORM REPOSITORY BRANCHES ... 52

TABLE 29: PLATFORM PROJECT ROLES AND RESPONSIBILITIES .. 52

TABLE 30: INTEGRATION TESTING TYPES ... 56

TABLE 31: HIGH LEVEL TEST AREAS FOR PLATFORM INTEGRATION .. 56

TABLE 32: INTEGRATION INFRASTRUCTURE CAPACITY PLANNING ... 60

D3.5: FLAME Technology Roadmap V1 | Public

Page 8 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

ABBREVIATIONS

AR Augmented Reality

AVC Advanced Video Coding

CDN Content Delivery Network

CI Continuous Integration

CLMC Cross-Layer Management and Control

CMS Content Management System

DC Data Centre

EaaS Experimentation-as-a-Service

ETSI European Telecommunications Standards Institute

FPGAs Field Programmable Gate Arrays

FQDN Fully Qualified Domain Name

FMI Future Media Internet

GPUs Graphical Processing Units

HTTP Hyper Text Transfer Protocol.

IP Internet Protocol

KPI Key Performance Indicator

NAP Network Access Point

NFV Network Function Virtualisation

PCE Path Computational Element

PIML Personalisation, Interactivity, Mobility and Localisation

QoE Quality of Experience

QoS Quality of Service

SDN Software Defined Network

SF Service Function

SFC Service Function Chain

SFEMC SF Endpoint Management and Control

D3.5: FLAME Technology Roadmap V1 | Public

Page 9 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

SFR Service Function Routing

SME Small and Medium Enterprise

TLS Transport Layer Security

TOSCA Topology and Orchestration Specification for Cloud Applications

TRL Technology Readiness Level

UE User Equipment

UX User Experience

VM Virtual Machine

VIM Virtual Infrastructure Manager

D3.5: FLAME Technology Roadmap V1 | Public

Page 10 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

1 INTRODUCTION

1.1 PURPOSE

This document aims to describe the technical roadmap for implementation, integration, testing and
deployment of FLAME technologies supporting trials and experiments of media services on highly-
distributed software-defined infrastructures. The goal is to provide software development teams
responsible for FLAME software products and operations teams responsible for service deployment
with the feature release schedules and DevOps processes that ensure timely delivery and results to an
acceptable level of quality.

1.2 SCOPE

The project is structured into three iterative development phases aligned with the strategic activities
of the work:

• Jan-17 to Feb-18: Research and innovation foundations: design, implement and deploy the
Alpha release of the FLAME platform ready for trials in Bristol and Barcelona production
infrastructures.

• Mar-18 to Jun-19: Ecosystem building and disruptive experimentation: operate trials and
experiments to validate the platform, working on feature enhancements towards the Beta
release.

• Jul-19 to Dec-19: Sustainability: transition towards exploitation and sustainability, hardening
the platform for RC release and working closely with technology adoption partners

The high-level platform engineering cycle follows these project phases. The project is currently in the
“research and innovation foundations” phase. D3.5 FLAME Technology Roadmap forming part of a
series of public reports delivered in each phase (see Figure 2).

 Figure 2: FLAME platform engineering reports

This report is the first version of the roadmap with further updates planned to be delivered at Jun-18,
Dec-18 and Dec-29. Related reports include:

• D3.1 [FLAME-D3.1] describes a series of early scenarios and use cases for interactive media
using the platform

• D3.2 [FLAME-D3.2] describing a methodology for conducting urban scale trials that explore the
cross-layer and multi-stakeholder interactions within the systems-under-test.

D3.5: FLAME Technology Roadmap V1 | Public

Page 11 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

• D3.3 [FLAME-D3.3] describes the architecture and infrastructure specifications for the FLAME
platform, elaborating the use cases from D3.1, refining system requirements and identifying
platform components and interfaces.

D3.3 is the primary reference point for the technical roadmap because it provides the overall structure
of the platform and allows features and development tasks to be decomposed into areas of work.

The target audience for this deliverable are developers working on FLAME software products,
infrastructure owners responsible for production deployment and wider stakeholders interested in the
FLAME offering, features and expected release schedules.

1.3 DELIVERY PARTNERS

The project is delivered by members of the FLAME consortium who have specific responsibilities for
implementation, operations, engagement and marketing of FLAME. The partners are referred to by
acronyms throughout this report as shown in Table 1.

Participant organisation name Short Name Country Roadmap Leadership
Roles

IT Innovation Centre ITINNOV UK Platform, CLMC

Atos Spain SA ATOS Spain Media Services

InterDigital Europe Ltd IDE UK SFR, SFEMC

Fundacio Privada i2CAT, Internet I Innovacio
Digital a Catalunya

i2CAT Spain Barcelona Infrastructure
Operator

University of Bristol UNIVBRIS UK Bristol Infrastructure
Strategy

Nextworks NXW Italy Validation Experiment

Martel GmbH Martel Switzerland Media Services

De Vlaamse Radio En
Televisieomroeporganisatie NV

VRT Belgium Validation Experiment

The Walt Disney Company (Switzerland) GmBH DRZ Switzerland Validation Experiment

Eidgenoessische Technische Hockschule Zuerich ETH Switzerland Validation Experiment

Institut Municipal d’Informàtica de Barcelona IMI Spain Barcelona Infrastructure
Strategy

Bristol is Open Limited BRISTOLOPEN UK Bristol Infrastructure
Operator

Table 1: FLAME consortium partners

D3.5: FLAME Technology Roadmap V1 | Public

Page 12 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

2 TECHNOLOGY ROADMAP

2.1 PROJECT MILESTONES

FLAME plans three major releases of the FLAME offering within the lifetime of the project. The timing
of major releases is aligned with the timescales of trials. Each major release will include significant
feature enhancements within the overall offering across infrastructure, platform and media services.
A release at the project level indicates the launch of a “FLAME Service” for trials in contrast to the
release of specific software products that the FLAME Service depends on.

Figure 3: Platform releases in relation to project milestones

Major releases are planned for Feb-18, Dec-18 and Jul-19 with the working names of Alpha, Beta and
Release Candidate (see Figure 3). The major releases correspond to milestones for FLAME feature
implementation. The project expects to implement DevOps processes that offer greater agility in the
implementation of release of features. As such Minor releases will be delivered in between major
milestones to incorporate new features when they are available and hot bug fixes when they are
critical to service operations.

2.2 OVERVIEW OF SOFTWARE PRODUCTS

FLAME will deliver three types of software products that reflect the layering in the architecture, as
shown in Figure 4 and described in Table 2.

At the lowest level are infrastructures products used by infrastructure providers to offer compute,
storage and networking resources to the FLAME platform. The infrastructure resources are typically a
virtual slice of a larger physical infrastructure and the acquisition of such resources is typically
wholesale on a long term basis between an infrastructure and platform operator. The FLAME platform
product is the core of the project and consists of four main components as summarised below:

• Orchestration: provides infrastructure resources to media services by defining surrogate
policies and key performance indicators for shorter term control.

D3.5: FLAME Technology Roadmap V1 | Public

Page 13 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

• Service Function Endpoint Management and Control: implements surrogate management
policies as well as to set suitable shorter-term control policies for service function endpoints

• Service Function Routing: configures the switching fabric of the underlying infrastructure using
OpenFlow

• Cross-Layer Management and Control: provides a rich pool of data as the basis for deriving
insights into infrastructure, platform and media service performance.

The software product types have dependencies as shown in Figure 5. Each product will be delivered
through a dedicated development and continuous integration pipeline as described in Section 4. The
products have been selected to ensure loose coupling and reuse of products in accordance with the
architectural decisions. The overall integration process for the software products required to deliver
the major releases of the FLAME service are described in Section 4.

Figure 4: FLAME software products in relation to architecture

Software Product
Type

Description

Infrastructure
Product

A product offering access to and management of infrastructure resources based on
specific hardware configurations. The infrastructure abstraction offered must be
common across all Infrastructure Products although it is expected there will be some
variation in function and performance for different Infrastructure Products. Multiple

D3.5: FLAME Technology Roadmap V1 | Public

Page 14 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Software Product
Type

Description

Infrastructure Products are expected covering different integration, staging and
production environments. It is expected that infrastructure products will build on and
adapt widely used open source available solutions, e.g. OpenStack1, OpenDaylight2
and Floodlight3 and where necessary contributions will be made to open source
extensions of existing infrastructure products

Platform Product A product offering flexible management and delivery of media services deployed on
Infrastructure Products. One platform product is expected to be delivered. This
product will be able to be configured for different Infrastructure Products. The
platform product is the primary outcome of the FLAME project.

Media Service
Product

A product offering content production, management and/or distribution features
that directly benefit from the features of the Platform Product. Many Media Service
Products are expected to be offered. The selection is based on the Media Service
products that benefit most from Platform Product features and are in demand for
delivery of new forms of user experience and social interaction.

Table 2: FLAME software products

Figure 5 and Figure 6 provide an overall summary of the approach. Software products are developed
within a dedicated continuous integration pipeline. In this example, pipelines for Infrastructure
Product A, Platform Product and Media Service Product are shown. Firstly, Infrastructure Product A is
built and tested on Infrastructure A, which for functional integration will be commodity hardware with
software-based switching. If Infrastructure Product A passes integration tests it is made available for
Platform Product integration testing on Infrastructure A. If the Platform Product passes integration the
product is made available for Media Service Product X integration testing on Infrastructure A. If all
integration tests pass then the Platform Product and the Media Service Product are distributed to the
staging infrastructure for acceptance testing and finally deployed on the production infrastructure for
real-life trials.

Figure 5: High level product dependencies

1 https://www.openstack.org/
2 https://www.opendaylight.org/
3 http://www.projectfloodlight.org/floodlight/

D3.5: FLAME Technology Roadmap V1 | Public

Page 15 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Any changes to software products in the pipeline may trigger continuous integration tests for products
downstream in the pipeline that depend on the product. The level of automation in continuous
integration process across products and the scheduling of integration tests at different phases in the
pipelines depends on the level of human control desired and the cost of integration testing itself. The
final stage of deployment on the production infrastructure can also form part of continuous
deployment processes, however, this depends on the policy of infrastructure operators.

Figure 6: Overview of software product integration and release

Software Product Project Owner Responsibility
Infrastructure BRISTOLOPEN • Integration Infrastructure (ITINNOV)

• Bristol infrastructure (BRISTOLOPEN)
• Barcelona infrastructure (i2CAT)

Platform ITINNOV • Orchestration (IDE)
o TOSCA++ specification language (Atos)
o FLAME orchestrator (IDE)
o Platform orchestrator (UNIBRIS)
o Media service orchestrator (Martel)

• SF endpoint management and control (IDE)
• SF routing (IDE)
• Cross layer management and control (ITINNOV)

Media Service Atos • Media service selection, adaptation and packaging (Atos)
• Media service packaging (Martel)
• Media service monitoring (Atos)

Table 3: Partner responsibilities across product implementation, integration and deployment activities

FLAME products are implemented, integrated and tested through contributions from multiple
organisations. Table 3 shows the distribution of responsibilities for technical partners contributing to
the implementation of the Platform product and Media Service products. Each component has an
owner responsible for delivery of the components to integration based on contributions from other
organisations.

D3.5: FLAME Technology Roadmap V1 | Public

Page 16 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

2.3 INFRASTRUCTURE PRODUCT ROADMAP

2.3.1 Infrastructures

FLAME will deliver a set of Infrastructure Products offering access to and management of infrastructure
resources based on specific software and hardware configurations. Infrastructures are expected to
support integration testing and production deployment at FLAME replication sites. Integration
infrastructures must support the software product integration and testing pipeline to ensure software
is acceptable for deployment in production environments. Production infrastructures must offer
FLAME services for real-life trials. Infrastructures elements can be considered as software or hardware
(see Table 2) although the actual distribution of infrastructure elements realised in each depends
entirely on the operator’s configuration.

Infrastructure
Flavour

Description Technologies

Software-based An infrastructure that is entirely based on commodity hardware
and where compute, storage and networking function is
delivered through virtualisation. Software-based infrastructures
offer high flexibility and lower costs but performance is
degraded.

OpenStack,
OpenDaylight,
Open vSwitch

Hardware-based An infrastructure that includes dedicated hardware elements
such as networking (e.g. switches), general processing (e.g.
Common servers), and hardware accelerators (e.g. GPUs) and
bespoke processing (e.g. FPGAs). Hardware-based
infrastructures offer higher performance but with increased
costs and less flexibility. At each experimentation site,
depending on the resource availability all or some of the
hardware resources will be offered.

Cloud IT
resources, edge
server, network
switches, radio
access elements

Table 4: Infrastructure flavours

Today, there is no uniform definition of a production infrastructure in FLAME, although common
specifications have been established. The FLAME replication process aims to provide guidelines for
infrastructure capability, capacity and management processes to ensure a minimum level of uniformity
between infrastructures. However, the implementation of such infrastructures is expected to be
different even if they are offered using a common infrastructure abstraction.

The consequence is that infrastructures need to be provided that support the full pipeline from
integration through to staging and production. These infrastructures need to be intelligently designed
to consider appropriate function and scale in relation to production, as due to cost limitations, it is not
possible to entirely replicate hardware from production environments at all stages. The expected
infrastructures are described in Table 5.

Infrastructure Description Operator

Functional
Integration
Testing

An infrastructure based on commodity hardware using software
defined switches. Used for functional integration testing of
software products.

ITINNOV

Hardware-
Based Testing

An infrastructure that clones a production infrastructure that
includes dedicated networking hardware.

IDE

Media Service
Sandboxing

A tiny infrastructure based on commodity hardware using software
defined switches. Used for media service providers to test APIs

Media Service
Provider

D3.5: FLAME Technology Roadmap V1 | Public

Page 17 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Infrastructure Description Operator

Bristol Staging A small-scale clone of the Bristol infrastructure used to perform
acceptance testing of Platform and Media Service Products on the
Bristol Infrastructure Product

BRISTOLOPEN

Bristol
Production

An urban scale production testbed deployed throughout the city of
Bristol. Used to conduct real-life trials with citizens and businesses
to determine the acceptance, viability and performance of the
FLAME products in Bristol

BRISTOLOPEN

Barcelona
Staging
(Validation)

A small-scale clone of the Barcelona infrastructure used to perform
acceptance testing of Platform and Media Service Products on the
Barcelona Infrastructure Product

I2CAT

Barcelona
Production

A production testbed deployed in the city of Barcelona. Used to
conduct real-life trials with citizens and businesses to determine the
acceptance, viability and performance of the FLAME products in
Barcelona

I2CAT

Table 5: Integration and production infrastructures

Each infrastructure must be defined in terms of configuration and capacity, including expected capacity
changes over the lifetime of the project. Understanding the relative capacities of each infrastructure
ensures that integration testing is completed at a scale appropriate for the expected usage on
production infrastructures.

2.3.2 Infrastructure Products

The relationship between infrastructures and Infrastructure Products is shown in Figure 7. The diagram
shows how Infrastructure Products need to be established for the different hardware environments.
The FLAME replication process will ensure that Infrastructure Products offer uniform capabilities to
the Platform Product and where possible share a similar technology baseline, although the baseline
needs to be adaptively configured according to the variation in hardware setups.

The distribution and reuse of Infrastructure Products depends on how integration and replication is
implemented. The Infrastructure Product targeting commodity hardware will be distributed
considering the need for media service providers to establish their own testing sandbox and the
likelihood of establishing small scale infrastructures for evaluation and demonstrations at events. The
reuse of Infrastructure Products between production sites is currently unknown, although the
infrastructure at BRISTOLOPEN and i2CAT are sufficiently different that different Infrastructure
Products are needed. It’s unclear at this stage that the products will converge, or if replication will be
achieved using a defined FLAME Infrastructure Product or further additional Infrastructure Products
offered by replicators.

Regarding the specific infrastructure technologies, FLAME is built on a SDN-enabled networking fabric
and implements a stateless switching solution4 which requires the switches and controller(s) to be at
least OpenFlow 1.3 compatible. As there is no capability verification alliance for OpenFlow (e.g. Wi-Fi
alliance) and the OpenFlow 1.3 features being considered as “experimental”, it is highly recommended
to double check with the vendor of the fabric if the following two features are supported:

4 Martin J. Reed, Mays F. Al-Naday, Nikolaos Thomos, Dirk Trossen, George Petropoulos and Spiros Spirou, “Stateless multicast
switching in software defined networks”, Online: https://arxiv.org/abs/1511.06069

D3.5: FLAME Technology Roadmap V1 | Public

Page 18 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

• Switches support arbitrary bitmask matching via semantically overloaded IPv6 fields

• Controller supports handling (read and insert) of arbitrary bitmask matching rules

Figure 7: Relationship between infrastructure and Infrastructure Products

If the infrastructure is based on a software-based switching, it is recommended to use Open vSwitch
which has not shown any compatibility issues. However, hardware switches implement the actual
switch in their TCAM tables which have an OpenFlow compatible API and only one switch is known to
support arbitrary bitmask matching, i.e. PICA85. As mentioned before, the chosen SDN controller must

• Accept the rules communicated via the REST API; and

• Insert them into the switches.

The following controllers have been successfully tested: Floodlight and OpenDaylight. ONOS does not
support arbitrary bitmasks yet.

For compute and storage resources OpenStack is adopted and will adapted to meet the needs of the
platform. The adaption expects to focus on specific configurations of OpenStack rather than additions
to source code. This will involve replacing OpenStack’s networking module Neutron with FLIPS to
control data plane routing between virtual machines. The OpenStack distribution will be based on
OpenStack Ansible6

5 Pica8, “PICA8: Programmable Internetworking &Communication Architecture, Infinite(8)”, Online: http://pica8.com
6

D3.5: FLAME Technology Roadmap V1 | Public

Page 19 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

2.3.3 Bristol Infrastructure Product

2.3.3.1 Bristol Staging Infrastructure Specification

The purpose of the infrastructures is to support the acceptance testing of Platform Product and Media
Service Products on the BRISTOLOPEN Infrastructure Product.

Figure 8: Bristol staging infrastructure configuration

Resource Capacity Availability Constraints
Compute 1 x OpenStack Compute Node,

Intel 2630V3s currently with 2x8
cores, 16GB RAM but hardware
specification under review.

These resources are shared across
projects.

Storage 750GB HD
RAID 1

These resources are shared across
projects.

Networking 4x 48 port NEC 5459 fibre switches
1 x 10 port Brocade switch

These resources are shared across
projects.

Table 6: Bristol staging infrastructure resource specification

Staging is intended to mirror the key aspects of the functionality within the city so it has edge
connectivity and compute storage but is generally only required to allow initial testing of areas prior
to deployment. As such once an experimenter has done some basic testing on staging they are
migrated to the production platform.

2.3.3.2 Bristol Production Infrastructure Specification (BRISTOLOPEN)

The purpose of the infrastructures is to support real-life trials and experiments to explore the
acceptance, viability and performance of FLAME products in Bristol. This diagram is a current snapshot
showing the locations with edge storage only, BRISTOLOPEN is currently deploying LTE into the
harbour side area and installing a high-performance computer.

D3.5: FLAME Technology Roadmap V1 | Public

Page 20 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Figure 9: Bristol production infrastructure configuration

Resource Capacity Availability Constraints
Compute 4 x OpenStack Compute Nodes, Installed across 4

locations around the city each with 2680v3 x 2 48 cores,
192GB RAM

These resources are shared across
projects.

Storage 1TB storage per location These resources are shared across
projects.

Networking 4x48 port NEC 5459 fibre switches. Brocade 10 port SDN
cabinet switch. Wi-Fi connectivity and LTE.

These resources are shared across
projects.

Table 7: Bristol production infrastructure resource specification

BRISTOLOPEN is investigating the expansion of the network to include 4 new active nodes, and a high-
performance computer and is currently deploying LTE access. Within some existing street cabinets
there is limited edge computing, but this is not shared across projects. BRISTOLOPEN is investigating
the deployment of shared Mobile edge computing capabilities in 2 locations in the city centre to
aggregate traffic. Mobile edge computing capability will be subject to discussions with site owners.

2.3.4 Barcelona Infrastructure Product

2.3.4.1 Barcelona Staging Infrastructure Specification

The purpose of the infrastructures is to support the acceptance testing of Platform Product and Media
Service Products on the Barcelona Infrastructure Product. The Barcelona staging infrastructure
configuration emulates the scenario deployed in the production environment (see Figure 10). All the
on-street hardware devices (edge cabinet and lampposts) will be deployed in a controlled environment
at i2CAT premises providing a full clone of the production infrastructure.

Resource Capacity Availability Constraints
Compute Cloud: i2cat cloud resources subject to the experiment

requirements and cloud resource availability. At minimum two
medium size servers.
Edge (emulates cabinet): 128GB RAM, 12 cores

Cloud resources shared
with the production
infrastructure

D3.5: FLAME Technology Roadmap V1 | Public

Page 21 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Resource Capacity Availability Constraints
Storage Cloud: 2TB SSD

Edge (emulates cabinet): 2x9600GB SSD
Cloud resources shared
with the production
infrastructure

Networking Cloud: 3xPronto TN3290 switches; 10Gbps wired connectivity
Edge (emulates cabinet): 10Gbps wired connectivity
On-street equipment emulation:
Up to 5 WLAN devices installed in the laboratory premises:
• Access network: IEEE 802.11n
• Multi-hop backhaul network: IEEE 802.11ac
• 10Gbps wired connectivity to the cabinet (only for

control/management traffic)
• 1 to 2 devices also with 10Gbps wired connectivity to the

cabinet for data traffic

Table 8: Barcelona staging infrastructure resource specification

Barcelona site will offer a small size validation testbed placed at i2cat premises. This facility will be
used to test and validate all FLAME offerings at the Lab level. Next step is to deliver the same set up
on a real-life environment, i.e. Pere IV Street, where the FLAME offerings will be examined against real
life traffics and situations.

2.3.4.2 Barcelona Production Infrastructure Specification

The purpose of the infrastructures is to support real-life trials and experiments to explore the
acceptance, viability and performance of FLAME products in Barcelona

Figure 10: Barcelona production infrastructure configuration

Deployment diagram of the physical hardware

Access
(lamppost)

Wi-Fi access & Backhaul

Edge
(street cabinet)

Edge Switch

Sections
Wi-Fi

OVS

Edge Server
NAP

1
NAP

3
NAP

2
NAP

4
NAP

5

Wi-Fi

OVS

Wi-Fi

OVS

Wi-Fi

OVS

Wi-Fi

OVS

Core
(Omega DC)

Core Switch Core Server
VIM / SDN

Media
storage NAP

Legend
Control plane
Wireless data plane
Wired data plane

D3.5: FLAME Technology Roadmap V1 | Public

Page 22 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Resource Capacity Availability Constraints
Compute Cloud: i2cat cloud resources subject to the experiment

requirements and cloud resource availability. At minimum
two medium size servers.
Edge (cabinet): 128GB RAM, 12 cores

Core resources shared with
the staging infrastructure

Storage Core: 2TB SSD
Edge (cabinet): 128GB RAM, 12 cores

Core resources shared with
the staging infrastructure

Networking Cloud: 3xPronto TN3290 switches; 10Gbps wired connectivity
Edge (emulates cabinet): 10Gbps wired connectivity
On-street equipment emulation:
Up to 5 WLAN devices installed in the laboratory premises:
• Access network: IEEE 802.11n
• Multi-hop backhaul network: IEEE 802.11ac
• 10Gbps wired connectivity to the cabinet (only for

control/management traffic)
• 1 to 2 devices also with 10Gbps wired connectivity to the

cabinet for data traffic

Table 9: Barcelona production infrastructure resource specification

The production infrastructure will be deployed in Barcelona during the first stage of the project as a
replication of Bristol FLAME infrastructure. Plans to extend the hardware infrastructure in Barcelona
is left beyond the scope of the project.

2.4 PLATFORM PRODUCT ROADMAP

A Platform Product offers flexible management and delivery of media services deployed on
Infrastructure Products described in Section 2. The Platform Product is the major software outcome of
FLAME providing advanced service management through Orchestration, Service Function Endpoint
Management and Control, Service Function Routing and Cross Layer Management and Control. The
overall benefits of the Platform are delivered through an aggregation of component features.

2.4.1 Platform Components and Features

This section describes the feature roadmap, service function chain, implementation technologies,
ownership of components that will form part of the Platform Product. Each service function chain is
analysed to determine the background technologies and the expected enhancements and adaptations
needed to deliver the features. The Technology Readiness Level7 is provided to give an indication of
the level of work that needs to be completed to ensure the component is ready for integration into
the Platform Product.

The ownership and licensing situation for components is identified including 3rd party licenses to
identify restrictions on access to the Platform Product. The Platform Product will be distributed as
software for deployment on production infrastructures by infrastructure providers initially (e.g.
BRISTOLOPEN and i2CAT) and then 3rd parties. The Platform Product will also be made available for
evaluation by 3rd parties for evaluation and trials. If restrictions are identified then design and
implementation decisions will be needed to isolate such components or seek alternative
implementations that are consistent with the usage objectives.

7 https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf

D3.5: FLAME Technology Roadmap V1 | Public

Page 23 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

2.4.1.1 Orchestration

The Orchestration component supports the interaction with Cross-Layer Management and Control
(CLMC) and media components, leading to an orchestration of compute, storage, and communication
resources, including the suitable configuration for SF endpoint control policies.

The features of the CLMC are defined in Table 10. These features are organised in accordance with the
interfaces towards other system components including:

• ETSI NFV MANO APIs, used to receiving and parsing a suitable TOSCA template that outlines
the required resources to be orchestrated

• Resource APIs: Used to receiving a suitable TOSCA-based infrastructure resource catalogue
that can be used to match against orchestration requests

• Orchestration APIs: Used to supporting the various orchestration frameworks and platforms
being utilised for FLAME, specifically those at the infrastructure, platform and media services
level. Figure 11 shows these levels of orchestration being realised through this feature.

Figure 11: Supporting Orchestration at Different Levels of the overall FLAME system

Feature
ID

Req Feature Description (still high level and
may need hierarchy in practice but for this
doc high level should be sufficient)

Component
Interface

Release

ETSI MANO
ORCH-1 Req-O1 Provide TOSCA template to OSM-based

platform orchestrator
ETSI MANO Alpha

ORCH-2 Req-O1
Req-O2
Req-O3
Req-I1

Parse TOSCA++, as defined in T4.1,
template and check for consistency

ETSI MANO Beta

Resource
ORCH-3 Req-I1 Receive TOSCA template as infrastructure

catalogue information
Resource Alpha

ORCH-4 Req-O2
Req-O3

Provide topology information towards SF
routing component

Resource Alpha

D3.5: FLAME Technology Roadmap V1 | Public

Page 24 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Feature
ID

Req Feature Description (still high level and
may need hierarchy in practice but for this
doc high level should be sufficient)

Component
Interface

Release

ORCH-5 Req-I1 Receive TOSCA++ template as
infrastructure catalogue information

Resource Beta

Orchestration
ORCH-6 Req-O1

Req-O2
Req-O3

Support Docker/container based media
service orchestration

ETSI MANO Beta

ORCH-7 Req-O1
Req-O2
Req-O3

Full consistency check of TOSCA++
template, including consolidating
deployment state with orchestration
request

ETSI MANO Beta

ORCH-8 Req-O2
Req-O3
Req-SEM1
Req-SEM3

Provide SF endpoint control policies in
TOSCA template extensions towards
SFEMC component

ETSI MANO Alpha

ORCH-9 Req-O2
Req-O3
Req-SEM1
Req-SEM3

Provide SF endpoint state information in
TOSCA template extensions towards
SFEMC component

ETSI MANO Beta

Table 10: Orchestration features

The Orchestration critical feature path for the Alpha release is shown in Figure 12. The critical path
clusters the features into swim lanes and shows the dependencies, including dependencies with other
components of the platform. The Orchestration component delivers features to the SF Endpoint
Management and Control as well as SF Routing component as part of the overall orchestration process.

The delivery is expected to be organised around key interface features. The SF Endpoint management
and control component is responsible for changing resourcing configurations in response to demands
expressed in the orchestration process by TOSCA [ETSINFV] templates being provided to the
orchestration component. Said TOSCA templates, which will be based on existing specifications for the
alpha release while envisioned to be extended for FLAME-specific requirements (e.g., to support geo-
location constraints) in the beta and RC release, are referred to as TOSCA++ in our feature table. The
orchestration feature will initially merely separate the management from the control parts in the
extended TOSCA template and provide the former to the platform as well as media service
orchestrator (see Figure 11). It will utilize existing platforms for those, while providing the latter to the
SF Endpoint management and control component for the initialisation of the SF endpoint state. The
orchestration feature provides the suitable control policies to the SF Endpoint management and
control component, while the resource feature provides the suitable topology information to the SF
Routing component.

D3.5: FLAME Technology Roadmap V1 | Public

Page 25 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Figure 12: Orchestration Critical "Feature" Path for Alpha Release

The relevant SFC for the alpha release is shown in Figure 13. The main interactions of the orchestration
component are illustrated there, i.e., first, the distribution of information derived from the received
TOSCA template to sub-components of the SF Endpoint management and control, second, as the SF
Routing components, specifically for the SF endpoint control policies, and finally the topology
information, obtained through the infrastructure provided resource information. As shown in Figure
11, we expect to distribute the orchestration functionality to existing platforms, such as Open Source
MANO [MANO], deployed over separate VMs.

Figure 13: Relevant Service Function Chain for Alpha Release

The Orchestration component will be implemented through adaptation and enhancement to existing
open source software that has been developed for the purpose of orchestration, following the split

D3.5: FLAME Technology Roadmap V1 | Public

Page 26 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

shown in Figure 11. The key for the alpha phase is to interface with the orchestration platforms
developed at the infrastructure level in Bristol and Barcelona. We will align the technology platform
used in Bristol for the platform orchestrator, while initially using the same platform for media service
orchestration. In later releases, we will move to container-based platforms for media service
orchestration.

Table 11 provides a summary of the orchestration implementation technologies including the licenses,
expected enhancements, foreground and TRL starting point. All background technologies of the
orchestration are offered on permissive software licenses that allows aggregation and distribution of
foreground in accordance with the Platform Product distribution within the project and beyond to 3rd
parties wanting to evaluate the software.

Service
Function ID

Technology
Starting
Point

License Expected enhancements Expected
foreground
ownership

TRL

Orchestration Open
Source
MANO

ASLv2 Parsing of TOSCA extensions to include
control policies

IDE 6

Table 11: Orchestration implementation technology summary

2.4.1.2 SF Endpoint Management and Control (SFEMC)

The SF Endpoint management and control component supports the orchestration process by adding
the flexible control capabilities outlined in D3.3 “FLAME Platform Architecture and Infrastructure
Specification V1” by maintaining SF endpoint instance state in collaboration with the SF Routing
component.

The features of the SFEMC are defined in Table 12. These features are organised in accordance with
the interfaces towards other system components including:

• Surrogate Policy Control: Used to receive and parse a suitable control policy from the
orchestration component, querying required monitoring data pertaining to such control policy
and realising a decision logic that matches the monitored data against the policy provided.

• SF Endpoint Allocation: Used to initialise and maintain an SF Endpoint specific state as well as
the compute/storage images that define the SF Endpoint functionality, while also realising
delegated name authorisation for the SF Endpoint.

Feature ID Req Feature Description Component
Interface

Release

Surrogate Policy Control
SFEMC-1 Req-SEM1 Parse surrogate policy based on TOSCA

template extension
Surrogate Policy
Control

Alpha

SFEMC-2 Req-SEM1 Parse surrogate policy based on TOSCA++
template extension

Surrogate Policy
Control

Beta

SFEMC-3 Req-SEM1
Req-SEM4

Query monitoring data Surrogate Policy
Control

Alpha

SFEMC-4 Req-SEM1
Req-SEM4

Decision logic matching monitoring data
against policy constraints

Surrogate Policy
Control

Alpha

SE Endpoint Allocation
SFEMC-5 Req-SEM4 Initialise and maintain SF endpoint state SF Endpoint

Allocation
Alpha

D3.5: FLAME Technology Roadmap V1 | Public

Page 27 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Feature ID Req Feature Description Component
Interface

Release

SFEMC-6 Req-SEM4

Maintain SF endpoint compute/storage
images

SF Endpoint
Allocation

Alpha

SFEMC-7 Req-SEM2 Allow for delegated name registration for
SF endpoint images

SF Endpoint
Allocation

Beta

Table 12: SF Endpoint Management & Control Features

The SFEMC critical feature path for the Alpha release is shown in Figure 14. The critical path clusters
the features into swim lanes and shows the dependencies, including dependencies with other
components of the platform. The SFEMC component delivers features to the SF Routing component
as part of the overall orchestration process in general and the control process in particular. The delivery
is expected to be organised around key interface features. The SF Endpoint management and control
component is responsible for changing resourcing configurations in response to demands expressed
in the orchestration process by having received the suitable control policies from the orchestration
component. The surrogate policy control feature will establish suitable monitoring capabilities aligned
with the surrogate policy constraints defined. It will also realise the decision logic to match the
monitored data against said policy constraints. The SF endpoint allocation feature maintains the SF
endpoint state according to the control policy provided while utilizing the SF Routing component for
service routing related state changes of the SF endpoint.

Figure 14: SF Endpoint Management & Control Critical "Feature" Path for Alpha Release

The relevant SFC for the alpha release is shown in Figure 13 with the surrogate manager SF
representing the surrogate policy control and SF Endpoint Allocation features of the SFEMC in Table
12. The VIM SF represents the functionality being used by available virtual instance platforms, such as

D3.5: FLAME Technology Roadmap V1 | Public

Page 28 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

OpenStack or Docker Swarm, in our realisation. As can be seen, we foresee the interaction between
orchestration component and SFEMC to be realised between our extended functionality (i.e., the
orchestration and the SFEMC features of Table 12), while realising the initialisation and maintenance
of the SF endpoint state through suitably interfacing with existing VIM solutions. While an ultimate
deployment of the SFEMC would foresee a single VM for this purpose, it is likely to utilise several VMs
for the FLAME-specific extensions and the re-used VIM parts.

Table 13 provides a summary of the orchestration implementation technologies including the licenses,
expected enhancements, foreground and TRL starting point. All background technologies of the
orchestration are offered on permissive software licenses that allows aggregation and distribution of
foreground in accordance with the Platform Product distribution within the project and beyond to 3rd
parties wanting to evaluate the software.

Service
Function
ID

Technology
Starting
Point

License Expected enhancements Expected
foreground
ownership

TRL

Surrogate
Manager

FLIPS Access via
Consortium
Agreement

Realization of features according to alpha
feature table

IDE 6

VIM OpenStack ASLv2 Integration IDE 6

Table 13: SFEMC implementation technology summary

2.4.1.3 Service Function Routing (SFR)

The SF routing component realises the service request routing at the data plane between media
components, including all operational and management features for supporting route changes,
registration of SF endpoints, etc.

The features of the SFR are defined in Table 14. These features are organised in accordance with the
interfaces towards other system components including:

• Protocol mapping: Used to terminate IP-based protocols at the ingress of the FLAME network,
mapping onto Layer2 only transactions and restoring the IP-level interactions at the egress of
the FLAME network.

• Routing: Used to support various constraint-based routing decisions as well as manage the
topology and forwarding information used for the data plane, including the assignment of IP
addresses towards media components in the FLAME platform.

• Registration: Used to support the registration of fully qualified domain name (FQDN) based
services.

• Resource management: Use to support link failover and QoS through traffic classes

• Diversity support: Used to support multi-source retrieval, net-level indirection as well as in-
session switching for HTTP

• Mobility: Used for support direct path mobility of users as well as NAP mobility use cases

• Security: Used for support encryption at the data plane as well as failure recovery for logically
centralised sub-components.

D3.5: FLAME Technology Roadmap V1 | Public

Page 29 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Feature
ID

Req Feature Description Component
Interface

Release

Protocol Mapping
SFR-1 Req-SR1

Req-SR2
Req.SR3

Implement HTTP level protocol mappings according
IDE specifications for HTTP-over-ICN

HTTP/IP Alpha

SFR-2 Req-SR1 Implement IP level protocol mappings according to
IDE specifications for IP-over-ICN

HTTP/IP Alpha

SFR-3 Req-SR1 Implement IP multicast protocol mappings according
to IDE specifications for IP-over-ICN

HTTP/IP Beta

Routing
SFR-4 Req-SR7 Support for shortest path routing HTTP/IP Alpha
SFR-5 Req-SR8 Support for geo constrained routing HTTP/IP Beta
SFR-6 Req-SR9 Support for policy routing HTTP/IP Beta
SFR-7 Req-SR7

Req-SR8
Req-SR9

Parse topology information model

Topology target Alpha

SFR-8 Req.SR1
Req.SR2

Support for topologies larger than 256 links Topology target Beta

SFR-9 Req.SR1 Managed DHCP-based IP address assignment HTTP/IP Beta
Registration
SFR-10 Req.SR11 FQDN registration based on configuration FQDN

Registration
Alpha

SFR-11 Req.SR11 FQDN registration based on registration distribution
protocol

FQDN
Registration

Beta

Resource Management
SFR-12 Req.SR10 Support for traffic classes based on protocol classes or

FQDN
HTTP/IP Beta

SFR-13 Req.SR12 Support for link failure through path updates HTTP/IP Alpha
Diversity support
SFR-14 Req.SR13 Support HTTP in-session switching HTTP/IP Alpha
SFR-15 Req.SR5 Support HTTP multi-source retrieval HTTP/IP Beta
SFR-16 Req.SR4 Support HTTP net-level indirection HTTP/IP Beta
Mobility
SFR-17 Req.SR6 Support UE-level inter-NAP mobility HTTP/IP Alpha
SFR-18 Req.SR6 Support NAP mobility HTTP/IP Beta
Security
SFR-19 Req-SR3

Req-S1
Support for HTTPS & TLS HTTP/IP Alpha

SFR-20 Req.SR1 Support against PCE failure HTTP/IP Beta
SFR-21 Req.SR1

Req.SEM2
Support for FQDN authority delegation HTTP/IP Beta

SFR-22 Req.SR1
Req.SEM2
Req.SR3
Req.S1

Support for manual content certificate distribution HTTP/IP Alpha

SFR-23 Req.SR1
Req.SEM2
Req.SR3
Req.S1

Support for automatic content certificate distribution HTTP/IP Beta

Table 14: SF Routing features

D3.5: FLAME Technology Roadmap V1 | Public

Page 30 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

The SFR critical feature path for the Alpha release is shown in Figure 15. The critical path clusters the
features into swim lanes and shows the dependencies, including dependencies with other components
of the platform. The SFR component delivers features to the media component in the form of data
plane connectivity at the level of HTTP/IP based protocols. The delivery is expected to be organised
around key interface features. The SF routing component is responsible for realising such data plane
connectivity based on the availability of SF endpoints in the FLAME network and the current conditions
of the transport network, e.g., in the form of available links being available. For this, the routing feature
parses the topology information model provided by the orchestration component to suitably configure
the infrastructure component, while initially providing shortest-path routing functionality to the
protocol mapping feature. The latter realises the media component facing IP protocol termination and
mapping onto Layer 2 protocol exchanges. It utilises the registration information realised by the
registration feature, while providing the basis for in-session switching for HTTP, realised by the
diversity support feature, and for encryption support, provided by the security feature.

Table 15 provides a summary of the orchestration implementation technologies including the licenses,
expected enhancements, foreground and TRL starting point. All background technologies of the
orchestration are offered on permissive software licenses that allows aggregation and distribution of
foreground in accordance with the Platform Product distribution within the project and beyond to 3rd
parties wanting to evaluate the software.

Service
Function
ID

Technology
Starting
Point

License Expected enhancements Expected
foreground
ownership

TRL

NAP & PCE FLIPS Access via
Consortium
Agreement

Realization of features according to alpha
feature table

IDE 6

SDN
Controller

FloodLight ASLv2 Integration IDE 6

Table 15: SFR implementation technology summary

D3.5: FLAME Technology Roadmap V1 | Public

Page 31 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Figure 15: SF Routing Critical "Feature" Path for Alpha Release

D3.5: FLAME Technology Roadmap V1 | Public

Page 32 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

2.4.1.4 Cross Layer Management and Control

The CLMC component supports the monitoring, measurement and assessment of media service and

platform performance, in addition to configuration of processes supporting the integration and

organisation of data for analytics.

The features of the CLMC are defined in Table 16. These features are organised in accordance with the

interfaces towards other system components including:

• Config: Used to monitor changes in media service configuration including the lifecycle of a

media service instance, media components and service functions

• Monitoring: Used to monitoring the state and performance of media services including all

configured items (media service instance, media components and service functions) and the

performance of underlying infrastructure resources allocated to them

• Analytics: Used to integrate and aggregate higher-level facts about media service KPIs and

dimensions

• Query: Used to query, filter and visualise media service and platform information

• KPI monitoring: Used to specify and monitor specific performance metrics of interest

• Security: Used to control access to information to those that are authorised to do so.

Feature
ID

Req Feature Description Component
Interface

Release

Config
CLMC-1 Req-C1 Define media service information model Config Alpha

CLMC-2 Req-C1 Define configuration information model

including failure taxonomy

Config Alpha

CLMC-3 Req-C1 Store configuration data Config Alpha

CLMC-4 Req-C1 Monitor media service lifecycle config

events

Config Alpha

CLMC-5 Req.C6 Monitor SF lifecycle config events (incl

geolocation) for NAPS, hosts and service

function instances

Config Alpha

CLMC-6 Req.C2 Flexible configuration of dimensional data

abstractions

Config RC

Monitoring
CLMC-7 Req-C1 Define monitoring information model Monitoring Alpha

CLMC-8 Req-C1 Monitoring data acquisition for media

component, service function endpoint and

service function routing

Monitoring Alpha

CLMC-9 Req-C1 Store monitoring data Monitoring Alpha

CLMC-10 Req-C1 Delete monitoring data Monitoring Alpha

Analytics
CLMC-11 Req.C2 Basic monitoring data aggregation

functions

Analytics Alpha

CLMC-12 Req.C2 Dimensional data abstraction across (time,

space, content representation, content

navigation, resource configuration, etc.).

Analytics Beta

CLMC-13 Req-C2 Define data quality model for accuracy,

completeness, timeliness and consistency

Analytics Beta

D3.5: FLAME Technology Roadmap V1 | Public

Page 33 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Feature
ID

Req Feature Description Component
Interface

Release

CLMC-14 Req.C2 Generation of new media service templates

with human in the loop

Analytics Beta

CLMC-15 Req.C2 Generation of new media service templates

through machine learning

Analytics RC

Query
CLMC-16 Req.C2 Query monitoring data Query Alpha

CLMC-17 Req.C2 Visualise monitoring data Query Alpha

CLMC-18 Req.C2 Query by KPIs and dimensions Query Beta

KPI
CLMC-19 Req.C2 Specification of KPIs for measured facts KPI Alpha

CLMC-20 Req.C2 Monitor KPI events based on measured

facts

KPI Alpha

CLMC-21 Req.C2 Monitor KPI events based on aggregated

facts

KPI Alpha

CLMC-22 Req.C7 Publish and subscribe to KPI events KPI Alpha

Security

CLMC-23 Req.C3 Define data subject information model Security Alpha

CLMC-24 Req.C3 Define information security model Security Alpha

CLMC-25 Req.C3 Query for data related to a data subject Security Alpha

CLMC-26 Req.C3 Delete data related to a data subject Security Alpha

CLMC-27 Req.C5 Secure communication of personal data Security Beta

CLMC-28 Req.C5 Restricted access to personal data Security Beta

CLMC-29 Req.C7 Restrict access to stakeholder viewpoints

on monitoring data

Security Beta

Table 16: CLMC features

The CLMC critical feature path for the Alpha release is shown in Figure 16. The critical path clusters the

features into swim lanes and shows the dependencies, including dependencies with other components

of the platform. The CLMC implementation depends on the specification for a media service.

According to the D3.3 architecture:

“[Media Service] Specification of the descriptors required for the definition, deployment and
management of Media Services, including dynamic behaviours that can be explored within
experimentation, testing and operations. Specification-Language-compliant Templates will be
available for the Media Service Providers to make the definition of Media Service easier. The
Specification Language will take into account current orchestration specs for cloud
environments, such as TOSCA.”

The media specification provides the logical configuration structure for a media service. This structure

defines context for monitoring information acquired when the media service is operated. The structure

offers key relationship between information whilst the logical naming of service functions will allow

for monitoring data to be integrated through the use of correct references. The overall naming scheme

for items within the media service specification is a critical input for different aspects of the CLMC

information model.

The CLMC delivers features to all other Platform components. The delivery is expected to be organised

around key interface features. The orchestrator and SF Endpoint management and control

components are responsible for changing resourcing configurations in response to media service

provisioning events and media service demand. These events need to be captured by the CLMC to

D3.5: FLAME Technology Roadmap V1 | Public

Page 34 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

track the changes in service configuration over time. For the alpha release the event logs will be limited

to key media service and SF lifecycle events. A protocol for reporting configuration events including

the message format with pub/sub service implementation is needed. With the configuration in place,

the CLMC has the context for monitoring information produced by different system components. The

infrastructure, platform and media services are Monitoring Producers that depend on the availability

of a pub/sub monitoring pipeline that offers a protocol and a messaging format for monitoring data.

Although these two feature streams are related they can be implemented in parallel if the information

model is agreed and information exchange is achieved through pub/sub protocols.

D3.5: FLAME Technology Roadmap V1 | Public

Page 35 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Figure 16: CLMC Critical "Feature" Path for Alpha Release

D3.5: FLAME Technology Roadmap V1 | Public

Page 36 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

The SFC for the alpha release is shown in Figure 17. The SFC is a simplified version of that described in
the architecture specification and does not include the features such as dimensional analytics and data
quality. The SFC is designed to allow SFs instances to be distributed in the same way as we expect for
media services. During the development it may be possible to deploy SFCs 4-6 within a single VM.
However, for integration, we’d expect these to be distributed across different VMs as the deployment
shift towards what would be expected in production.

Figure 17: CLMC Service Function Chain for Alpha Release

The CLMC service function chain will be implemented through adaptation and enhancement of an
existing open source software that has been developed for the purpose of service monitoring. The key
for the alpha phase is to put in place the technologies supporting the acquisition of the data. Higher
level analytics can then be implemented in later releases to help improve the way media services are
managed. Table 17 provides a summary of the CLMC implementation technologies including the
licenses, expected enhancements, foreground and TRL starting point. All background technologies of
the CLMC are offered on permissive software licenses that allows aggregation and distribution of
foreground in accordance with the Platform Product distribution within the project and beyond to 3rd
parties wanting to evaluate the software.

Service
Function
ID

Technology
Starting
Point

License Expected enhancements Expected
foreground
ownership

TRL

CLMC-
SF1

TBD Dec-17 TBD Integration Atos 6

CLMC-
SF2

TBD Dec-17 TBD Integration IDE 6

CLMC-
SF3

TBD Dec-17 TBD Integration I2CAT 6

CLMC-
SF4

Apache
Kafka

ASLv2 Configuration of topics, monitoring producers,
consumers, etc.

ITINNOV 6

CLMC-
SF5

InfluxDB MIT
License

Configuration of transactional time series data
model; Configuration of time series data
aggregation functions

ITINNOV 6

D3.5: FLAME Technology Roadmap V1 | Public

Page 37 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Service
Function
ID

Technology
Starting
Point

License Expected enhancements Expected
foreground
ownership

TRL

CLMC-
SF6

Grafana ASLv2 Configuration of dashboard; Configuration of
alerts for notification of KPIs

ITINNOV 6

Table 17: CLMC implementation technology summary

2.4.2 Summary of Platform Releases

Table 18 provides a summary of component features across each platform release.

Component Alpha Features (Feb-18) Beta Features (Dec-18) RC Features (Jul-19)

Orchestration • Monitor orchestration
decisions

• Provide TOSCA template
to OSM-based platform
orchestrator

• Receive TOSCA template
as infrastructure
catalogue information

• Provide topology
information towards SF
routing component

• Provide SF endpoint
control policies in TOSCA
template extensions
towards SFEMC
component

• Parse TOSCA++, as defined
in T4.1, template and
check for consistency

• Receive TOSCA++ template
as infrastructure catalogue
information

• Support Docker/container
based media service
orchestration

• Full consistency check of
TOSCA++ template,
including consolidating
deployment state with
orchestration request

• Provide SF endpoint state
information in TOSCA
template extensions
towards SFEMC
component

Service
Endpoint
Management
and Control

• Monitor service function
endpoint

• Parse surrogate policy
based on TOSCA
template extension

• Query monitoring data

• Decision logic matching
monitoring data against
policy constraints

• Initialise and maintain SF
endpoint state

• Maintain SF endpoint
compute/storage images

• Parse surrogate policy
based on TOSCA++
template extension

• Allow for delegated name
registration for SF
endpoint images

Service Routing • Monitor service function
routing

• Implement HTTP level
protocol mappings

• Implement IP multicast
protocol mappings
according to IDE

D3.5: FLAME Technology Roadmap V1 | Public

Page 38 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Component Alpha Features (Feb-18) Beta Features (Dec-18) RC Features (Jul-19)
according IDE
specifications for HTTP-
over-ICN

• Implement IP level
protocol mappings
according to IDE
specifications for IP-
over-ICN

• Support for shortest
path routing

• Parse topology
information model

• FQDN registration based
on configuration

• Support for link failure
through path updates

• Support HTTP in-session
switching

• Support UE-level inter-
NAP mobility

• Support for HTTPS & TLS

• Support for manual
content certificate
distribution

specifications for IP-over-
ICN

• Support for geo
constrained routing

• Support for policy routing

• Support for topologies
larger than 256 links

• Managed DHCP-based IP
address assignment

• FQDN registration based
on registration distribution
protocol

• Support for traffic classes
based on protocol classes
or FQDN

• Support HTTP multi-source
retrieval

• Support HTTP net-level
indirection

• Support NAP mobility

• Support against PCE failure

• Support for FQDN
authority delegation

• Support for automatic
content certificate
distribution

CLMC • Define media service
information model

• Define configuration
information model

• Store configuration data

• Monitor media service
lifecycle config events

• Monitor SF lifecycle
config events (incl
geolocation) for NAPS,
hosts and service
function instances

• Define monitoring
information model

• Monitoring data
acquisition for media
component, service

• Dimensional data
abstraction across (time,
space, content
representation, content
navigation, resource
configuration, etc.)

• Define data quality model
for accuracy,
completeness, timeliness
and consistency

• Generation of new media
service templates with
human in the loop

• Query by KPIs and
dimensions

• Secure communication of
personal data

• Restricted access to
personal data

• Flexible
configuration of
dimensional data
abstractions

• Generation of
new media
service templates
through machine
learning

D3.5: FLAME Technology Roadmap V1 | Public

Page 39 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Component Alpha Features (Feb-18) Beta Features (Dec-18) RC Features (Jul-19)
function endpoint and
service function routing

• Store monitoring data

• Delete monitoring data

• Basic monitoring data
aggregation functions

• Query monitoring data

• Visualise monitoring
data

• Specification of KPIs for
measured facts

• Monitor KPI events
based on measured facts

• Monitor KPI events
based on aggregated
facts

• Publish and subscribe to
KPI events

• Define data subject
information model

• Define information
security model

• Query for data related to
a data subject

• Delete data related to a
data subject

• Restrict access to
stakeholder viewpoints on
monitoring data

Table 18: Platform feature roadmap

2.5 MEDIA SERVICE PRODUCT ROADMAP

2.5.1 Media Services Overview

A media service product is a software product offering content production, management and/or
distribution capabilities. Media service products are integrated, tested and packaged including a
default template specification for deployment on a FLAME platform to create media services. A media
service product is dependent on one or more media component products implementing underlying
service functions within the overall media service function chain [FLAME-D3.3].

A media service product is no more than a set of media components described in terms of topology,
performance and resourcing using templates. Media services themselves are not part of the FLAME
platform but are deployed and managed by it. The FLAME platform orchestrates the deployment of
media components as well as internal service functions. Throughout the project the goal is to build an
initial set of foundation media services and then extend the available media services through
developments conducted by 3rd parties.

D3.5: FLAME Technology Roadmap V1 | Public

Page 40 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Figure 18: Media services and media components

2.5.2 Media Service Packaging

The packaging of the media services impacts in the way the media service products are made available.
Although the decisions could be refined in a near future, we aim at a container-based deployment of
media services to ensure service start up delay is minimised. The container technology will be based
on Docker8. The orchestration is not implemented as a single piece of software but rather as a
collaboration between a Platform Orchestrator and a Media Services Orchestrator. The selected
technology for the media services orchestration is Kubernetes, as it is proven to be the most successful
orchestration platform for containerised services. The definition of media services for Kubernetes is
achieved with the use of Charts. Charts lets users define how different subservices (Docker images) of
the whole media service are configured and linked together. We propose the use of one Charts per
media service, but charts are composable and reusable, so we may consider hierarchies and collections
of them. FLAME is considering OASIS TOSCA, with the required extensions, for the description of the
media services via templates, which will contain all the required information for a full deployment.

2.5.3 Media Component Products

FLAME has defined a list of media component products that offer common capabilities necessary to
construct media service products. For example, a content conditioning process will require transcoding
and trans-rating media components. The initial media components products are used to create
FLAME’s “foundation media services” providing examples of capabilities that benefit from the FLAME
platform. The foundation media components and services form part of the FLAME offering.

Due to the number and variety of the foundation media components criterion have been established
to select components to be implemented. Firstly, the prioritisation process has carefully analysed the
validation scenarios proposed in FLAME. D3.1 – FMI Vision, Use Cases and Scenarios describes the
mentioned validation scenarios [FLAME-D3.1]

• Participatory media for interactive radio communities (City Fame)

• Personalised media mobility in urban environments (Follow Me)

• Collaborative interactive transmedia narratives (Interactive Storytelling)

8 https://www.docker.com/

D3.5: FLAME Technology Roadmap V1 | Public

Page 41 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

• Augmented reality location-based gaming (Gnome Trader).

Some of the foundation media services have been specifically defined to cover modules of these
validation scenarios, as described in D3.3 FLAME Platform Architecture and Infrastructure Specification
V1 [FLAME-D3.3]. Secondly, the prioritisation of the media services has considered the suitability of
the media services to show the advantages of the FLAME platform benefits and technical innovations
as described in Section 2.5 of D3.3. Finally, the prioritisation process has considered the terms for the
different FLAME releases and the development requirements for each service. Additionally, a certain
foundation media service can include different implementations along the project (e.g., involving
different existing software initiatives) with the respective temporal terms.

Table 19 identifies the media components that fulfil the requirements of modules identified in the
FLAME validation scenarios. These foundation media components can be clustered according to their
functionality and the step they cover in the production and distribution chain, as detailed later.

ID Name Description
MC-1 Media content

database
This service consists in a generic database, which is a required module in most of media
services. Thus, the four FLAME validation scenarios include a database, as shown in
FLAME deliverable D3.3. For example, the City Fame validation scenario contains a
database to store and provide knowledge about states and historically measured data
required to generate user profiles, interest groups and the relationship among them.
Some complex media services require the stateful replication of a synchronised
database. For example, a certain service may require a replicated media database in
the edge to improve the availability of media contents. FLAME benefits and
technological innovations enable a very efficient procedure for the replication of the
database in the deployment.

MC-2 Media Quality
Analysis

The objective of this service is the evaluation of the media characteristics of a certain
media asset. These characteristics include data such as the resolution, the video and
audio codecs and also an automatic estimation of the quality. This last functionality is
required to determine the suitability of contents provided by prosumers. This is the
case, for example, of the City Fame validation scenario.

MC-3 Content Ingest This media component enables the insertion of media assets to make them available
in a media service. This component will satisfy two different functionalities. On one
hand, it will enable the provision of contents to deploy an experiment. In this case, the
service is used before the experiment deployment. For instance, a media service
provider may want to test a Video-On-Demand (VoD) service using the FLAME
platform. This service would allow the provider to “upload” the assets. On the other
hand, this service will enable the ingest of content as a part of an experiment, as in the
City Fame scenario. In this case, the service is used during the experiment itself.

MC-4 Content
Storage

This media component is in charge of storing the media assets for the provision of the
services. This kind of functionality is widely required by media services. This is for
example the case of a video on demand service. This component satisfies the
requirements of the content provisioning module in the Follow me scenario, among
others.

MC-5 Content
Caching
Management

This component is in charge of managing the content replication for the assets
availability. For example, this component would be used by a virtual CDN to control
the existence of repositories along the network, since a CDN works as a hierarchy of
caching. This component satisfies the functionalities of the Caching manager module
in the Interactive storytelling scenario.

MC-6 Content
Management
System

The content management system or CMS is a widely used media component that
supports the creation and modification of digital content. These systems usually offer
a web user interface to control the existence and availability of media assets.

MC-7 Content
Conditioning

This component is in charge of processing the media assets to make them available.
For example, assets must be split in chunks and encoded at different bitrates to offer
a video-on-demand adaptive streaming service.

D3.5: FLAME Technology Roadmap V1 | Public

Page 42 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

ID Name Description
MC-8 Transcoding

and
Transrating

Transcoding consists in the change of the video or audio specification to represent the
content of an asset. This kind of encoding is named source encoding. For example, this
component would be in charge of converting an AVC/H.264 video clip into a
HEVC/H.265 one. The use of a more recent specification (and this is the case of HEVC
with regard to AVC) enables a reduction of the bitrate required to represent the
information while it preserves the subjective quality.
Transrating is a similar process but in this case the encoding specification does not
change. It typically consists in an additional source encoding to reduce the bitrate (this
processing will cause a reduction of the quality, too).

MC-9 Adaptive
Streaming

Adaptation is the process that allows a player to take into account the network (and
the receiver) capabilities to automatically and instantaneously adapt the transmitted
bitrate (and the quality) in a streaming service. In this way, adaptive streaming
optimises the instantaneous quality along the asset duration.
The adaptive streaming service in FLAME plans two different implementations: one for
video on demand assets and another one for live content.

MC-
10

Virtual CDN This service consists in the creation of a CDN using virtual nodes to optimise the
advantages of this kind of networks, such as bitrate, low latency, load balance and
scalability. CDNs perform caching of data to enable faster access by the end users.
Moreover, CDNs approach content to end users with high availability and high
performance. Video distribution networks are typically CDNs. FLAME benefits, via
Platform products, enable new ways of implementing CDNs.

MC-
11

Adaptive Data
Transmission

This component extends the mentioned adaptive video concept to other kinds of data
transmission. For example, a certain media service could require the transmission of
3D models to be rendered in the user equipment or in AR applications. This component
optimises the bitrate (and quality) of the transmission of this additional data. The
Gnome trader scenario requires this kind of functionality.

MC-
12

Metadata
Transmission
and
Management

Metadata consists of data that describe the media assets. Media systems usually
manage this information to enable the deployment of services. An example of
metadata is the asset information in the different validation scenarios. This component
is close related to other media component and services, like the content management
system (CMS).

Table 19: Media component products

As stated in the description of these media services and components, several of them are related. The
mentioned list tries to present them in an order that reveals the relationships between the services.
Two main clusters can be distinguished:

• Services and components related to content management and processing. This category
includes: content ingest, content storage, content caching management, content management
system and content conditioning.

• Services and components related to information transmission and distribution. This category
includes: adaptive streaming, virtual CDN, adaptive data transmission and metadata
transmission and management.

2.5.4 Releases and Media Services Product Implementation Roadmap

Table 20 summarises the roadmap for the implementation of media service products in FLAME
according to the prioritisation criteria explained in the previous subsection.

Component Alpha Beta Comments

Media content
database

Yes Yes All the validation scenarios contain a database. It can show FLAME
benefits.

D3.5: FLAME Technology Roadmap V1 | Public

Page 43 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Component Alpha Beta Comments

Media quality
analysis

No Yes This service is planned for the beta release.

Content ingest No Yes Although this service is planned for the beta release, the method and
protocols for content ingest will be analysed for the alpha release

Content
storage

No Yes This service is planned for the beta release.

Content
caching
management

No Yes This service is planned for the beta release. This service will take
advantage of key FLAME capabilities for content replication.

Content
management
system

No Yes This service is planned for the beta release.

Content
conditioning

Yes Yes A first version of this service will be available in alpha release. This service
will allow the automatic encoding of the audio-visual content at a variety
of bitrates and resolutions and the processing of the media assets to
enable adaptive streaming services.

Transcoding
and
transrating

Yes Yes Different versions of this component are planned for both alpha and beta
releases, depending on 1) software to perform the encoding and 2)
solution conceived for live content or video on demand. Concerning the
first characteristic, we propose two different software initiatives: Wowza
and FFMPEG. Wowza is a commercial and consolidated product for the
deployment of adaptive streaming services, including transcoding and
transrating whereas FFMPEG is an open source initiative that provides a
variety of encoding tools. FLAME will offer the encoding formats covered
by these external tools. Particularly, for the beta release, FLAME will
include the new and efficient HEVC encoding format. With regard to the
second characteristic, the key difference is due to the fact that live
content requires encoding on the fly, which may need large computing
capabilities. On the other hand, video-on-demand transcoding is
performed off-line and it does not include real-time requirements. The
alpha release will include transcoding and transrating performed by
Wowza for live content and transrating performed by FFMPEG on H264
contents for video on demand. The beta release will extend the
supported formats. The use of these two different tools is also conceived
to enable different exploitation models in the future (with or without
commercial, external software).

Adaptive
streaming

Yes Yes A first version of the adaptive streaming service will be available in the
alpha release. The service will be refined for the beta release. The alpha
release will be based on Wowza. Different tools may be integrated in the
beta release, according to the evolution of available streaming initiatives.
This service will support different adaptive streaming technologies and
particularly MPEG-DASH and HLS. Other technologies (HDS and Smooth
Streaming) will be also available if required.

Virtual CDN No Yes Virtual CDN. FLAME proposes an innovative implementation based on
FLIPS, one of the new technologies involved in FLAME. The design of this
implementation is planned for the medium term. For this reason, this
component will be ready for the beta release.

Adaptive data
transmission

No Yes This service is planned for the beta release.

Metadata
management
and
transmission

No Yes This service is planned for the beta release. The implementation will be
close related to the content management system.

 Table 20: Media services release plan

D3.5: FLAME Technology Roadmap V1 | Public

Page 44 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

3 SUPPORTING TRIALS AND EXPERIMENTATION

FLAME aims to deliver a new media service deployment platform based on highly distributed software-
defined infrastructures. The development process is grounded in the idea that the platform will be
tested for function, performance and acceptance through a series of trials and experiments conducted
on real-life infrastructures.

The design, implementation and execution of trials and experiments is supported by the platform APIs
and tooling. As discussed in Section 6.1.3 of D3.3, FLAME’s management and control is designed to
support different contexts of use. The term “experiment” describes a context of use and that the
management and control lifecycles are equally applicable in DevOps and business intelligence
processes. D3.3 states that:

“The fact that we are conducting an experiment does not change the capabilities needed to
manage and control the system.”

And continues to say experiments are just the motivation setting out objectives and outcomes:

“For an experiment, this could be to test a hypothesis or for business intelligence, this could be
to investigate performance of a media service within a specific geographic region. In each case,
the decision maker explores service management knowledge to understand how to establish
better management and control policies in relation to performance criteria.”

What this means is that the features in the technology roadmap are designed to be generally applicable
to different situations and not tied exclusively to experimentation. This approach allows FLAME to
communicate the management and control features in ways that have more value and meaning to
potential adopters of the technologies.

However, the connection between experimentation and management and control lifecycles is
important in terms of FLAME’s content and the KPIs expected by the project. In the following sub-
sections we elaborate this in more details exploring how the features of the platform address the KPIs.
Also, not that these KPIs will form part of the Platform product test plan so that the impacts can be
provided in terms of measurable benefits.

3.1 EXPERIMENTATION WITHOUT CONSTRAINTS OF PHYSICAL LOCATION

A key barrier to reuse and replication of platforms is the tight coupling with specific physical
infrastructures. FLAME addresses this barrier as follows:

Experiment Requirements FLAME Features
FLAME will provide an experimental toolbox that
supports programmatically specifying, controlling
and monitoring experiments independent of physical
location by exploiting key platform and infrastructure
capabilities.

FLAME offers an experiment toolbox through
features of the Orchestrator (TOSCA specification)
and the CLMC (monitoring). Through TOSCA
templates and infrastructure abstractions SUT can be
controlled and monitored independently of physical
location.

Building on current software defined technologies for
network and cloud management, and defining an IaaS
specification and capacity model for the target
experiments, FLAME will provide the mechanisms

FLAME’s architectural infrastructure abstraction
based on common standards and specifications,
along with integration and testing across different
Infrastructure Products ensures technical replication
at different locations

D3.5: FLAME Technology Roadmap V1 | Public

Page 45 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Experiment Requirements FLAME Features
necessary for replication locations to be created that
are compatible with the FLAME platform.
By addressing provisioning of mobile edge and data
centre resources interconnected with software
defined communications, FLAME will deliver content
distribution and delivery that exploits the
cloudification of networks, surrogate management
and flexible service routing to improve QoE for
consumers and manage QoS for operators.

FLAME’s KPI and dimension information model within
the CLMC allows for measurement and analysis of
cross layer function and performance. The focus on
KPIs and dimensional measurements in the
experiment design provides the use cases and scopes
testing of measure procedures for different
characteristics of the system under test

Through a VSN specification language that includes
experimentation constraints associated with
important FMI abstractions geography, population,
localisation, experimenters will be able to specify
once and repeat experiments at different real-world
locations

FLAME extends the TOSCA specification to include
additional constraints that can be used to orchestrate
media services at different geo-graphic locations

Table 21: How FLAME’s features support experimentation independent of physical location

The KPIs defined for experimentation independent of location are defined in Table 22. These KPIs must
form part of the detailed integration test plan that’s outlined in Section 4.3.

KPI ID Description Target (by the end of the project)
FLAME
F2.1

Virtual Service Network
Specification Language for FMI
experiments

1 specification language measured by peer reviewed publication
and contribution to relevant spec/standards organisation (OASIS,
ETSI, etc.)

FLAME
F2.2

Experimentation toolbox for offline
specification, real-time control and
monitoring

1 toolkit available for use by FIRE+ and FMI experimentation
communities.

Table 22: KPIs for trials and experiments without constraints of physical location or access to a specific
experimental facility

3.2 REDUCTION IN EXPERIMENTATION TIME

Mechanisms and approaches adopted in FLAME to reduce the time required to experiment are listed
in the following table.

Experiment Requirements FLAME Features
FLAME will significantly reduce the time to
experiment through a series of acceleration
methodologies and supporting tools supporting the
experimentation lifecycle (design, specification,
provisioning, control, observation, analysis).

Features for TOSCA++ templates, management,
control, monitoring and analytics features support
the full lifecycle of experimentation. This covers
features of the Orchestrator, CLMC, SF Endpoint
Management and SF Routing.

Media services need real-time interactive behaviours
that are supported by reliable, reconfigurable
infrastructures offering performance guarantees.
FLAME’s FMI Experimentation Instance templates will
be designed to support target media service
workflows expected in the FMI such as those
identified in Validation Experiments.

Features for TOSCA++ template support the
specification of media service and SFCs. The
validation experiments have been analysed to
produce a set of SFC use cases for the platform, as
documented in D3.3. This report provides a roadmap
for the foundation media services to be integrated in
support of the validation experiments.

Adaptable templates will accelerate experiment
design and development, and will allow for consistent
FMI performance knowledge to be captured in
different situations. These insights into the operation

Features of the information model includes common
specification of media service structure and resource
specification through TOSCA++ whilst the definition
of KPIs and dimensions (spatial, content format,

D3.5: FLAME Technology Roadmap V1 | Public

Page 46 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

of the infrastructure and platform will be captured,
annotated and disseminated through an FMI
Performance Knowledgebase ensuring that the
patterns of usage are shared within the
experimentation community. The knowledgebase
will underpin provisioning policies and allow for
definition of target provisioning times for FMI
Experimentation Instances.

content representation, etc.) provides a consistent
way of capturing and analysing FMI performance
knowledge. The CLMC will persists data across
multiple trials and experiments, whilst analysis of this
data leads to the generation of improved media
service templates. Ownership of the data is governed
by data access policies and access is made based
through licensing agreements.

Other acceleration measures will include
preconfigured media analytics pipelines for
experiment monitoring, toolkits support experiments
designed to explore QoS/QoE in real-life
environments, mentoring and dedicated tutorials for
SMEs/Start-ups and a replication process that
incorporates best practice governance and
operations models for operators.

Features of the CLMC allow for pre-configuration with
measurement procedures in accordance with the
information model ensuring that users of the
platform can explore and configure easily the types of
cross-layer data available for understanding the
behaviour of interactive media systems. All software
products will be documented with and automated
scripts established for build, provisioning and
configuration of software products.

In addition, reconfiguration functions at different
layers (infrastructure, platform, application) will be
assessed to define runtime response times with a
target error rate. To ensure reliability of the platform,
a taxonomy of failure models will be identified to
track the performance of different experimentation
resources.

SF endpoint management and SF routing features
support reconfiguration of SF instances in response to
surrogate policy constraints. The Orchestrators
TOSCA++ templates allow for re-specification of
constraints. The CLMC’s configuration interface
supports notification of failure events associated with
media service and SF lifecycles.

Table 23: How FLAME’s features support reduction in experimentation time

The KPIs defined for reducing experimentation time are defined in Table 24. These KPIs must form part
of the detailed integration test plan that’s outlined in Section 4.3.

KPI ID Description Target (by the end of the project)
FIRE+ P1.5 Cost reduction declared by the experiments At least 25%
FLAME F3.1 Automated provisioning of large-scale experiments across

a variety of requirements (PIML-orientation)
FMI Experimentation Instance
templates supporting tailoring and
adaptation >=5

FLAME F3.2 Ave service-level latency for mobile interactive media
services

<=5m secs

FLAME F3.3 Ave, Min, Max Provisioning Time for Standard FMI
Experimentation Instances

Response Time <=60 secs

FLAME F3.4 Ave, Min, Max Real-Time Control (Reconfiguration)
Functions Response Time specified for infrastructure and
platform

Response Time <=30 secs

FLAME F3.5 Network capacity through traffic localization and
multicast delivery in HTTP-based services

10x increase

FLAME F3.6 Concurrency for multi-tenancy sets of experiments Experiment Concurrency >=5
FLAME F3.7 Taxonomy of platform reliability and failure states for FMI

experiments
1 Deliverable and >=1 peer reviewed
publication

FLAME F3.8 FMI Performance Knowledgebase providing benchmarks
for cross layer operations

>=30 experimentation data sets

FLAME F3.9 FMI Performance Knowledgebase Access: Target=>100
data access requests per annum)

>=100 data access requests per
annum)

FLAME F3.10 FMI open data sets published in repositories for H2020
Open Data Pilot

>=5 open data management
packages with >=20 downloads

Table 24: KPIs for reduction of the time to experiment

D3.5: FLAME Technology Roadmap V1 | Public

Page 47 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

4 SYSTEMS INTEGRATION

4.1 INTEGRATION STRATEGY

The integration strategy is designed to deliver software products that are of sufficient quality to
conduct urban scale trials on infrastructures deployed in real-life environments. The strategy aims to
maximise software quality within the cost constraints associated with testing, including both the
capital costs of testing infrastructure and labour costs of writing, maintaining and conducting the tests
themselves. Where possible the strategy adopts software engineering best practices to achieve
efficiency, consistency of results and to deal with the complexity of integrating complex software
products.

The strategy considers the full pipeline from unit testing of components through to the launch of the
EaaS offering on infrastructures. Continuous Integration (CI) is at the centre of the approach where
contributions from developers are merged and integrated frequently to help reduce integration
problems in software products.

Figure 19: FLAME continuous integration and deployment pipelines

The high level view of the FLAME integration and deployment pipeline is shown in Figure 19. The
pipeline is split into three phases:

Phase Outcome Activities Multiplicity
Deployment Operational systems

deployed on a
production
infrastructure

Reviewing products;
Acceptance testing on
staging infrastructure;
Deploying products on
production

Multiple deployment pipelines, one
for each FLAME Replicator. Includes
Bristol and Barcelona then
expanding to three further
Replicators.

Product CI Products to be
deployed on
production
infrastructures

Build, configuration and
integration testing

Multiple integration pipelines, one
for each product. Includes
Infrastructure Products, Platform
Product and Media Service
Products

Component
CI

Software components
contributing to
products

Coding, unit testing, module
integration testing

Multiple integration pipelines, one
for each module. Includes modules
for each Product, e.g. CLMC,

D3.5: FLAME Technology Roadmap V1 | Public

Page 48 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Phase Outcome Activities Multiplicity
Orchestrator, FLIPS for the Platform
Product

Table 25: FLAME continuous integration pipeline phases

Each phase in the pipeline is connected by workflows and policies that control the exchange of
artefacts. The workflows are designed to ensure efficient working between distributed multi-
organisation development teams. The policies ensure that the artefacts shared between each phase
meet a minimum set of requirements for the next phase.

4.2 PROJECTS, WORKFLOWS AND TOOLING

Activities within the CI pipeline are conducted within the context of Projects. Projects provide the
management tools for prioritisation of features, organising development work, and triggering test
suites. Projects will be managed within GitLab9 which offers software project management capabilities
for code content management, issue tracking and continuous integration. Table 26 summaries the
main capabilities of GitLab.

Activity Description
Git Repository Content management system used to manage collaborative development and release

of software.
Issue Tracking Used to track features and issues related to software developed within the project.

Issues can be labelled and organised into Issue Boards to review and schedule
development

Continuous
Integration

Used to automatically trigger or schedule unit and integration tests on target
environments. CI pipelines are defined through .gitlab-ci.yml in the projects route
directory. Note, in the community edition that multi-project CI is not supported.

Table 26: Software project management tools

The Platform Product is made up of different distinct components as described in the Platform Product
road map (see Section 2.4).

Project Description Owner Expected
Contributors

Platform The parent project responsible for delivering Platform Product
releases to deployment infrastructures

IT
Innovation

ALL

Orchestrator A component project responsible for delivering the
Orchestrator to the Platform Product

IDE Atos,
UNIBRIS,
Martel

CLMC A component project responsible for delivering the CLMC to
the Platform Product

IT
Innovation

IDE, Atos,
I2CAT

FLIPS A component project responsible for delivering the FLIPS to
the Platform Product

IDE None

Table 27: Platform project and component projects

The Platform Product CI pipeline uses a multi-project structure to support the development and
integration (see Figure 20).

9 https://about.gitlab.com/

D3.5: FLAME Technology Roadmap V1 | Public

Page 49 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Figure 20: Platform product integration pipeline

4.2.1 Platform project

The platform project:

• Manages features and release schedules for the Platform product

• Integrates components through dependency management with artefacts deliverable by
component projects and 3rd parties

• Operates a continuous integration pipeline including build, provision, configuration and
integration test suites

• Releases the platform product to the deployment infrastructures

The platform product is released as a set of packages that can be built, provisioned and configured on
downstream production infrastructure operating OpenStack and an SDN fabric supporting OpenFlow
(see Figure 21). The integration infrastructure replicates this process and tests scenarios against the
integration infrastructure defined in Section 4.4. The high level steps in the integration process are
shown in Figure 22. Each component project delivers software packages for integration by publishing
into an accessible package repository. The packages conform to a set of requirements (see Section
4.2.3) for platform integration. Integration then implements a process to build, provision, configure,
test and release the products.

The Build step creates VM images in a way that optimally targets the infrastructure used. This process
of deciding on the relation between VM images and packages is a deployment decision and should not
be done within the component projects themselves. If component projects released VM images that
would limit the flexibility in how the platform is provisioned and configured. It is however expected
that developers within the component projects are responsible for VM image build scripts used within
the platform project and not the entire responsibility of the Platform project owner. This is reflected
in the distribution of resources across the FLAME work plan.

D3.5: FLAME Technology Roadmap V1 | Public

Page 50 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Figure 21: Platform integration tools

The Provision step creates a Platform stack on an OpenStack deployment according to the needs of
one or more integration test scenarios. The provisioning is achieved using the Heat orchestrator10
through the definition of Heat templates that describe the infrastructure allocated to Platform VMs.
Heat then manages the full lifecycle of allocating the infrastructure and provisioning the Platform.

The Configure step configures the Platform components within a stack for a specific test scenario.
Configuration is achieved using Ansible11 through Playbooks supporting the management of
configuration on remote services.

The Test step includes the execution of the integration test suite on a built, provisioned and configured
platform. The tests conducted are designed according a test plan and the defined integration test
scenarios covering functional, load and UI testing. The testing framework is expected to be JMeter for
functional and loading testing, and Selenium for UI testing primarily focused on any management
dashboards provided to users of the Platform.

Finally, the Release step packages the Platform Product for distribution to deployment sites.

The content within the Platform project repository will consist primarily of scripts to build, provision
and configure the platform and an integration test suite. The integration test suite will implement a
test plan designed to ensure an acceptable level of quality in product releases. The test plan will include
a set of test scenarios that provides an acceptable test coverage for the product features. The test
coverage will be defined based on the requirements in the technical roadmap and will be checked by
the stakeholder deployment infrastructures to ensure acceptance on delivery of the product.

10 https://wiki.openstack.org/wiki/Heat

11 https://www.ansible.com/

D3.5: FLAME Technology Roadmap V1 | Public

Page 51 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Figure 22: High level product integration process

The workflow for the management of content within the repository and product release is shown
Figure 23. The diagram shows a set of branches each created to incrementally integrate features and
bug fixes towards stable releases. The approach is based on the Git feature workflow where for the
Platform product features reflect test scenarios to be built, provisioned, configured and tested. The
workflow includes two main branches (master and develop) and a set of supporting branches for
feature, release and hotfix. The purpose and rules associated with each type of branch are described
in Table 28.

Figure 23: Platform project workflow

Name Purpose Branch off Merge
back

Naming

master The main branch where the code of HEAD
always reflects a production-ready state

- - Master

integration The main branch where the code of HEAD
always reflects a state with the latest
delivered development changes for the next
release. Used to trigger nightly builds.

master release-* Integration

feature Feature branches are used to develop new
scripts for build, provision and config along
with integration test scenarios covering

integration integration anything except
master,
develop,

D3.5: FLAME Technology Roadmap V1 | Public

Page 52 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

functional or load tests defined in the test
plan.

release-*, or
hotfix-*

release Used to support preparation for production
releases such as minor fixes, preparing
metadata, allowing integration to continue

integration integration,
master

release-*

hotfix Used to prepare for an unplanned production
release from the necessity to act immediately
upon an undesired state of a live production
version. Typically this will include integration
of an upstream package including a bug fix.

master develop
and master

hotfix-*

Table 28: Platform repository branches

The Platform project has the roles and responsibilities as described in Table 29.

Project Role Responsibilities Partner
Project Owner Responsible for the overall platform project and the delivery of

product releases to production. Responsible for the
development of test plans and test scenarios in accordance with
features within the technical roadmap and the acceptance
criteria of deployment infrastructures

IT Innovation

Continuous
Integration
Monitor

Responsible for monitoring the nightly integration builds and
investigating in the morning who caused the integration failures.
The frequency of the e

Allocated to
integration developers
on a weekly rotational
basis

Integration
Developer

Responsible for developing and maintaining build, provisioning
and config scripts, and integration tests for component
integration in accordance with the test plan. Also bug fixing
following nightly build failures if commits cause the integration
to fail.

Test implementation
allocated to partners
according to roadmap
and resources

Table 29: Platform project roles and responsibilities

4.2.2 Component projects

Each component of the Platform is developed within a component project with a dedicated component
project operating its own CI pipeline. The outputs of the component project are software packages for
integration delivered in accordance with the Platform Integration Policy. Each component project is
the responsibility of the component owner and includes contributions by one or more organisations.
However, the operation of the component CI pipeline including the development workflows, the
schedules for integration and the development environment is all defined by component project
owners.

This approach allows for component project owners to manage CI pipelines in ways that suit the
policies of contributing organisations. For example, the FLIPS component will only include
contributions by IDE and will be released for Platform Integration as a binary. Here IDE can develop
FLIPS at organisation level Git repo and releases can be packaged and published to integration package
registry. For other components, collaborative development from multiple contributing organisations
is expected and the Git repo will be hosted centrally.

Each component project conducts the following activities:

• Manages features and schedule of implementation for the component

• Manages the environments used by developers

D3.5: FLAME Technology Roadmap V1 | Public

Page 53 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

• Operates a CI pipeline including build, unit test suits and integration test suits at the
component level

• Delivers integrated components as packages to the Platform project

The infrastructures used to develop the components cannot easily replicate the integration or
production infrastructures. Where possible approaches are needed to develop and test components
within development rather than integration environments. For example, the CLMC can be developed
and tested on a develop machine using a Docker environment without any dependency on OpenStack
or other platform components such as FLIPS. The key is that the CLMC is designed and implemented
to be run as a Platform SF using only supported base images and protocols. Of course, in such
development environments the CLMC cannot take advantage of SF routing or management offered by
FLIPS, however, the programme logic and integration between different services can still be
implemented and tested. The integration with FLIPS can occur within Platform integration.

Ideally the component project workflows should mirror the best practice described for the Platform
project (see Section 4.2.1). Each component project should make available the latest build
(integration), release candidate (release-*) and production version (master) to the Platform project for
integration. The release of a package into the Platform project notifies the Platform project owner who
implements the integration policy, e.g. automatically update dependencies and trigger integration
testing on the integration branch. In some circumstances, it may be advisable to create a feature
branch within the Platform repo for the new component package so that scripts and tests affected can
be updated without affecting the integration branch.

Even though it is undesirable, a Platform Product production release may include a release candidate
of a component rather than a production release of that component if that is a version that includes a
time critical feature or bug fix. However, a platform product release should not include an integration
release of a component due to the instability of such packages.

Figure 24: Sample component project workflow

4.2.3 Product Project Policies

Each Product Project implements policies that define the requirements that components must fulfil
for integration into FLAME products. The policies included aspects of technical constraints of the
environment, configuration scripts, documentation and minimal acceptable testing criteria

ReqID Description
INT-1 All packages MUST be published in an agreed format to the integration registry.

D3.5: FLAME Technology Roadmap V1 | Public

Page 54 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

ReqID Description
INT-2 Alpha packages MUST be deployable as virtual machines within OpenStack.
INT-3 All packages MUST only communicate using the protocols supported by the FLIPS component.
INT-4 All packages MUST be documented according to the product documentation standards
INT-5 All packages MUST be unit tested to ensure the basic correctness of code. Unit tests are run

frequently to detect bugs early on in business logic, so that the developer who introduced the bug
can fix it immediately. Unit tests must be well encapsulated and don’t use external resources or
additional components such as databases and infrastructures. Unit test target small and distinct
part of code, they must be simple to write and maintain. Unit testing is the responsibility of the
developer, unit testing policy must be enforced by the project owner and automatically triggered
as part of the CI pipeline. Unit tests must be kept separate from integration tests (See next section),
they should not run together. Developers working on code must be able to run unit tests and get
immediate feedback to ensure that they haven't broken anything before committing. If test suites
take too long developers are likely to stop running and maintaining tests. This will result in delivery
delays due to the effort required to bring unit test suites up to date with the code. The technology
used to manage unit test suits depends largely on the programming language and the software
development environment. FLAME mandates that unit testing must be conducted but does not
mandate any specific unit testing framework.

INT-6 All product pipelines MUST operate a master, stable and development branch and make this
available for integration

INT-7 Master branch releases MUST be tagged and versioned using the {major}.{minor}.{patch}, e.g.,
• 3.2.1

Release branch releases MUST be tagged {major}.{minor}.{patch}-
{releaseTag.preRelease}.{commits}, e.g.

• 2.2.0-alpha1.50

Development branch release MUST be tagged {major}.{minor}.{patch}-{releaseTag}-{commits}, e.g.,

• 1.1.0-rc100 – alpha release for 1.0.0. at 100 commits to the development branch

Please note that the tagging of software products using development phases (alpha, beta and rc)
can be run on a different schedule to the project milestones identified in Section 2.1

INT-8 All packages must include an intellectual property registry and licensing

4.3 INTEGRATION TEST PLAN

4.3.1 Assumptions

• Software inputs

o All software must be released in accordance with Product Policies defined in 4.2.3

• Test plan

o Test case design must be focused on meeting the business objectives, cost efficiency,
and quality.

o Test case design must consider the features within the technical roadmap for each
release and constraints of production infrastructures

o Test case design must consider the project KPIs defined in the description of action or
any updates subsequently agreed.

D3.5: FLAME Technology Roadmap V1 | Public

Page 55 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

o The test plan must be reviewed by production infrastructure owners prior to the start
of testing

o Performance tests should provide insights for a limited software-based infrastructure
with the expectation of improved performance on production.

• Testing process

o Testing must be conducted with a common, consistent procedures, yet flexible, with
the ability to change as needed.

o Testing within the CI pipeline must be automated.

o Testing must be a repeatable, quantifiable, and measurable activity.

o Testing environment and data must emulate a production as much as possible.

• Resourcing

o Testing will be incremental building upon previous stages to avoid redundancy or
duplication of effort.

o Testing effort must be managed in close coordination with the project management
to ensure appropriate balance between research, innovation and software quality.

o All team members must have an overall knowledge of product features even if deep
knowledge is known by specialists at the component level.

4.3.2 Integration testing

The outcome of the integration tests are software products released to production deployments.
Integration includes a test suite for verifying and validating the interaction between components and
infrastructures. Integration tests focus on finding faults in the environment and configuration, they do
not test the business logic within code as that’s the responsibility unit tests. Integration tests span
several software components, devices and hardware components, in any functional flow. As a result,
if an integration test fails, it is complex to identify the cause. Components must use a logging
framework that can be controlled via flags that allow for minimal logging during normal production
usage and progressively more detail to be logged in the event of a problem. For some problems,
exhaustive logging is the only way to analyse a failure and discover the problem, however, logging can
affect performance so it is important to be configurable.

Integration testing is managed using a test plan that defines different test scenarios. The test scenarios
execution paths through different platform components necessary to deliver function and
performance. There are many possible paths through a complex system so the goal of the test plan is
to determine an appropriate test coverage considering the resources available for testing and the
desired quality of the software product.

Test Areas Description Tooling
Integration Test the function and interaction between two or more

components
JMeter

Spatial
configuration

A type of integration test that tests features depending on the
relationship between physical and virtual geolocation.

JMeter

Load Tests the performance of two or more components JMeter

D3.5: FLAME Technology Roadmap V1 | Public

Page 56 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Test Areas Description Tooling
Hardware Test the function or performance of one or more components

on specific hardware
TBD

UI Tests the function of user interfaces delivered through web
browsers

Selenium

Table 30: Integration testing types

FLAME will use an automated integration testing framework to create test plan and execute testing
scenarios relevant to production deployments. Tests will be developed, maintained and managed as
part of the Platform project.

4.3.3 Test areas

Test areas determine interactions between components that require integration testing. Table 31
shows the high-level test areas for the platform integration and the components involved in the test.
Initially FLIPS needs to be tested against the integration infrastructure to ensure SF Routing and
Endpoint Management functions correctly. FLIPS can then support management of other Platform SFs
(Orchestrator, CLMC). Orchestration can be tested across the full Media Service lifecycle with FLIPS.
Finally, both FLIPS and Orchestration can be tested with the CLMC for monitoring and configuration
events. The specific tests within each test area will be determined by the features in the technical
roadmap.

Test area Infra FLIPS Orch CLMC Summary
SF Routing X X SF routing features on the integration

infrastructure
SF Endpoint Management X X SF endpoint lifecycle management features on

the integration infrastructure
Media Service
Orchestration

X X X Media service lifecycle management features on
the integration infrastructure

Infrastructure monitoring X X X Measurement procedures for infrastructure
metrics

SF Routing Configuration X X X Event logging for SF routing configuration
SF Routing Monitoring X X X Measurement procedures for SF routing metrics
SF Endpoint Management
Configuration

X X X Event logging for SF endpoint configuration

SF Endpoint Management
Monitoring

X X X Measurement procedures for SF endpoint
metrics

Orchestration Configuration X X X X Event logging for media service lifecycle
configuration

Table 31: High level test areas for Platform integration

4.4 INTEGRATION INFRASTRUCTURE

The purpose of the integration infrastructure is to support functional testing and limited load testing
of the Platform Product and Media Service Products. The infrastructure is designed to test product
features within an infrastructure that replicates key aspects of production. The infrastructure only
replicates part of the production infrastructure due to cost constraints. However, by using a software-
based infrastructure it can be flexibly configured to support different test cases representative of those
expected in real-life production trials.

D3.5: FLAME Technology Roadmap V1 | Public

Page 57 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Figure 25 shows the target logical topology of the integration infrastructure data plane. The design is
based on supporting a core network of three switches with each switch offering two NAPs. Each NAP
represents a connection to a data centre (DC) or edge node. DC NAPs offer connectivity to media
services, edge NAPs allow IP Endpoints representing one or more end user devices to access the
network. Some edge NAPs have limited compute capacity to host media services.

Figure 25: Logical topology of integration infrastructure data plane

This configuration offers a practical baseline for testing scenarios. The use of three switches allows
different SF routes to be explored including cases of routing loops. The heterogeneity in DC and Edge
resources allows SF endpoint management policies to be explored under different resourcing
constraints. The distribution of IP endpoints allows for demand to be generated from different parts
of the network.

The configuration is not fixed and different setups may be established for specific test cases or when
resources need to be shared. For example, the media service resources may be aggregated to create
a larger data centre or it in some situations may be more optimal to allocate resources to specific
integration tests rather than offer the entire set up for each test.

The integration infrastructures management and control plane is shown Figure 26 covering
infrastructure and platform services. These services are based on the Infrastructure Products and
Platform products described in Section 2.3 and Section 2.4 respectively. At the lowest level OpenStack
and OpenDaylight are deployed to provide management of virtual compute and the SDN fabric.
OpenStack is used to allocate virtual slices of the integration infrastructure to the Platform for give
integration scenarios. This is achieved through OpenStack’s project concept allowing different
tenancies to be managed. The tenancy is used primarily to manage different virtual slicing
configurations required by integration tests rather than to support multi-tenant testing. However,
there may be situations where multiple platforms need to be deployed across the integration
infrastructure if concurrent testing is required by different partners. Using OpenStack’s project and
concept allows such configurations to be supported if needed.

The Platform services are then deployed as a stack of VMs within an OpenStack tenancy. This includes
all of the SFs required for FLIPS, orchestrator and CLMC components as defined in Section 2.4. Figure
26 shows the platform SFs deployed on two servers. Even though the integration infrastructure is small

D3.5: FLAME Technology Roadmap V1 | Public

Page 58 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

scale and won’t be implementing load balancing and clustering it’s important to provide a reasonable
mirroring of separation between components. To achieve this the infrastructure controllers and
platform controllers are separated whilst the CLMC is also isolated considering the requirements for
low contention on storage I/O.

Figure 26: Integration infrastructure management and control plan

Table 32 shows an estimated capacity plan for the integration infrastructure considering the logical
topology (Figure 25), the services required for the management and control plane (Figure 26) and
continuous integration services including load test drivers. The full workload assumptions
underpinning these estimates are described in Appendix A. Overall the total capacity required for
integration is:

• number of VMs = 27

• number of CPUs = 49

• RAM = 103 GBytes

• storage = 5 TBytes

These estimates consider a standard media service size that can be used as the basis for functional
testing of the Platform. The capacity plan does not consider how to support the requirements for all
media services as these requirements have a high degree of variation and often require significant
capacity beyond what can be provided in integration. Media services with service function chains
requiring significant resources can only be tested on staging infrastructures where such capacity exists.

VMTypes #elements
(VMs)

#CPUs
per
VM

Total
CPUs

RAM Storage Storage
Type

Server Workload assumptions

Integration
Services

D3.5: FLAME Technology Roadmap V1 | Public

Page 59 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

VMTypes #elements
(VMs)

#CPUs
per
VM

Total
CPUs

RAM Storage Storage
Type

Server Workload assumptions

Continuous
Integration

1 2 2 2 1000

 Intermittent load based on
build frequency, storage of
build artefacts and test data

Infrastructure
Product

OpenStack
Controller

1 2 2 8 1000 Baseline estimate

OpenDaylight
Controller

1 1 1 8 100 Baseline estimate

OVS switch 3 1 3 3 20 Baseline estimate
Platform
Product

FLIPS PCE 1 1 1 1 20 Baseline estimate

FLIPS NAP 4 1 4 4 80 Baseline estimate

FLIPS MOOSE 1 1 1 1 100 Baseline estimate

Orchestrator
OSM

1 8 8 16 100 Disk

CLMC MQ
(KAFKA)

1 4 4 32 500 Disk Buffer Mem =
write_throughput *
buffer_seconds
Storage = write_throughput *
log_retention_hours
Separate drive to avoid disk IO
contention with other services

CLMC TX DB
(INFLUX)

1 4 4 4 1000 SSD,
IOPS
500

 Assuming a single node
Low = 5K writes a second, 5
queries a sec, 100K unique
series
Med = 250K, 25K, 1M
Low Compute
CPU: 2-4 cores
RAM: 2-4 GB
IOPS: 500
Storage Size
Non-string values require
approximately three bytes.
String values require variable
space as determined by string
compression.

CLMC
Dashboard
(Grafana)

1 1 1 2 1 Disk

Media Service
Products

Media Service
Functions

6 2 12 12 600 Disk Depends on scenarios

IP Endpoints 4 1 4 8 200 Disk Depends on the test
scenarios, could be co-located
with the CI server will most
likely be idle when the tests
are running unless we run
parallel build and integration
tests

Totals 27 29 49 103 4821

D3.5: FLAME Technology Roadmap V1 | Public

Page 60 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

Table 32: Integration infrastructure capacity planning

The final allocation of VMs to servers will be a trade-off between performance, isolation and cost.
Consolidating VMs on fewer servers will reduce the cost of the integration infrastructure. However,
this will result in poorer performance and more contention between the components during tests
increase difficulty and time to resolve defects on test failure.

D3.5: FLAME Technology Roadmap V1 | Public

Page 61 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

5 CONCLUSIONS

This report has described the first technical roadmap for the FLAME project. The report describes a set
of interdependent software products that together will provide a ground-breaking media service
delivery platform exploiting the benefits of highly-distributed software-defined infrastructures.

The Platform product has been elaborated in detail being to core output of the project. A feature
analysis is described for the FLAME platform covering Orchestrator, SF Endpoint Management and
Control, SF Routing and Cross-Layer Management and Control. A feature critical path is provided for
the alpha release and subsequent features distributed across future releases. The Infrastructure
Products are described to provide the target deployment environment for products. The media service
product roadmap is also included, identifying the foundation services that will form part of the FLAME
offering. The relationship with experimentation and project KPIs is elaborated to explicitly show how
features of the Platform address the key objectives of experimentation independent of physical
location and reducing the time to perform experiments.

A systems integration and testing plan is defined detailing the DevOps processes including multi-
project structure, development workflows, and testing tools. A software based integration
infrastructure is specified that offers the ability to conduct integration tests that cover the expected
features of the platform, are representative of the production infrastructures and allows for
concurrent integration tests if needed for the different integration activities expected within the
project.

D3.5: FLAME Technology Roadmap V1 | Public

Page 62 of 62

© University of Southampton IT Innovation Centre and other members of the FLAME Consortium 2017

REFERENCES

[ETSINFV] ETSI GS NFV-SOL 004 Network Functions Virtualisation (NFV) Release 2; Protocols and Data
Models; VNF Package specification, available at
http://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/004/02.03.01_60/gs_nfv-
sol004v020301p.pdf

[FLAME-D3.1] D3.1 FMI Vision Use Cases and Scenarios v1.0, available at
https://www.ict-flame.eu/download/d3-1-fmi-vision-use-cases-and-scenarios-v1-0/

[FLAME-D3.2] D3.2 Experimental Methodology for Urban-Scale Media Trials v1.0, available at
https://www.ict-flame.eu/download/d3-2-experimental-methodology-for-urban-scale-media-trials-
v1-0/

[FLAME-D3.3] D3.3 FLAME Platform Architecture and Infrastructure Specification v1.0, available at
https://www.ict-flame.eu/download/d3-3-flame-platform-architecture-infrastructure-specification-
v1-0/

[MANO] Open Source Mano, available at
http://www.etsi.org/technologies-clusters/technologies/nfv/open-source-mano

